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Abstract

The analysis of variance (ANOVA) is frequently used to examine whether a number of groups

differ on a variable of interest. The global hypothesis test of the ANOVA can be reformulated as a

regression model in which all group differences are simultaneously tested against zero. Multiple

imputation offers reliable and effective treatment of missing data; however, recommendations

differ with regard to what procedures are suitable for pooling ANOVA results from multiply

imputed datasets. In this article, we compared several procedures (known as D1, D2 and D3)

using Monte Carlo simulations. Even though previous recommendations have advocated that D2

should be avoided in favor of D1 or D3, our results suggest that all procedures provide a suitable

test of the ANOVA’s global null hypothesis in many plausible research scenarios. In more extreme

settings, D1 was most reliable, whereas D2 and D3 suffered from different limitations. We provide

guidelines on how the different methods can be applied in one- and two-factorial ANOVA designs

and information about the conditions under which some procedures may perform better than

others. Computer code is supplied for each method to be used in freely available statistical

software.

Keywords: multiple imputation, missing data, multiparameter test, pooling, ANOVA.
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Pooling ANOVA Results From Multiply Imputed Datasets: A Simulation Study

The analysis of variance (ANOVA) is a popular method for analyzing data in many fields of

psychology and the social sciences (Cohen, Cohen, West, & Aiken, 2003; Maxwell & Delaney,

2004). One of the major goals of an ANOVA is to examine whether a number of groups (e.g.,

demographic features, experimental conditions) differ with respect to some variable of interest.

The global null hypothesis, according to which all groups stem from the same population, is tested

by comparing the portions of variance that reside between and within groups. Under the null

hypothesis, the ratio of the mean squares between and within groups follows an F distribution. If

group differences are reasonably large compared with individual differences, the global null

hypothesis is rejected, and groups are believed to differ with respect to the variable of interest.

Missing data are a pervasive problem in the social sciences. Deleting the missing values

(e.g., listwise deletion) is an easy but inefficient way of dealing with missing data that can

seriously distort statistical analyses (Little & Rubin, 2002). Other techniques such as multiple

imputation (Rubin, 1987) promise a more reliable and efficient treatment of missing data (Schafer

& Graham, 2002). Multiple imputation (MI) draws a number of M replacements for the missing

values from their posterior predictive distribution, given the observed data and a statistical model.

The completed datasets are then analyzed using regular complete-data methods, and the parameter

estimates are pooled according to the rules described in Rubin (1987) to form final parameter

estimates and inferences.

Rubin’s rules are easily applied to one-dimensional estimands such as means or regression

coefficients, but multidimensional estimands (e.g., comparing multiple groups in the ANOVA’s

F test) call for different methods. Several such methods are discussed in the literature, and clear
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recommendations can be found in various books and articles (Little & Rubin, 2002; Marshall,

Altman, Holder, & Royston, 2009; Reiter & Raghunathan, 2007; Schafer, 1997). However, some

authors’ conclusions are less than definite and they emphasize the need for further research

concerning realistic applications of these methods (Enders, 2010; Snijders & Bosker, 2012; van

Buuren, 2012). In addition, previous studies have often focused on a technical understanding of

these methods without considering specific research designs. Using computer simulations, we

compared several pooling methods for the F test in one- and two-factorial ANOVA designs. We

examined the robustness of these methods as well as the conditions under which some methods

may be more trustworthy than others. We attempted to complement the existing literature with

simulation results that can be easily applied to research practice. Computer code is given for each

method to be used in freely available software.

Pooling ANOVA Results

The one-factorial ANOVA can be reformulated as a regression model in which the outcome

variable is regressed on a number of dummy variables that represent the membership in a group i

(i = 1, . . . , I). For I groups, the group membership can be coded by K = I − 1 dummy variables

such that the regression coefficients reflect differences between groups. In complete datasets, the

Wald test of the K-dimensional vector of regression coefficients (without the intercept) is

equivalent to testing the ANOVA’s null hypothesis that there are no differences between groups

(e.g., Cohen et al., 2003). Over the past years, several methods have become available for carrying

out multiparameter hypothesis tests in multiply imputed datasets (e.g., Enders, 2010; Little &

Rubin, 2002; Schafer, 1997; van Buuren, 2012). These methods build on different aspects of the

completed-data analyses and thus differ in behavior and ease of application. Here, we provide a
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brief overview of the procedures featured in our study, illustrated for the one-factorial ANOVA.

The procedures extend naturally to two-factorial designs, with effect coding instead of dummy

coding.

Moment based statistics (D1 and D∗1). The D1 procedure extends Rubin’s rules to

multidimensional estimands such as the K-dimensional vector of regression coefficients in the

ANOVA. Using D1, the vectors of regression coefficients and their associated covariance matrices

are pooled across the imputed datasets. Given a set of coefficient vectors Q̂m (m = 1, . . . ,M) and

estimates of their sampling covariance matrix Ûm, the D1 statistic reads

D1 =
(Q̄ −Q0)TŪ−1(Q̄ −Q0)

K (1 + ARIV1)
, (1)

where K = I − 1 is the number of regression coefficients that represent group differences, Q̄ and

Ū are the average point and covariance estimates, and Q0 is the vector of regression coefficients

expected under the null hypothesis. The ARIV1 denotes the average relative increase in variance

due to nonresponse, that is, the extent to which the sampling variance of the estimator has

increased due to missing data

ARIV1 =
(1 + M−1)tr(BŪ−1)

K
, (2)

where B is the covariance matrix of the estimates Q̂m across the imputed datasets (see Enders,

2010, for an illustration). The ARIV is conceptually related to the fraction of missing information

(FMI; Rubin, 1987), which denotes the portion of the total sampling variance of an estimator that

is due to missing data1. Rubin (1987) and Li, Raghunathan, and Rubin (1991) derived an

1Estimates of the FMI were based on estimates of the ARIV such that FMI = ARIV/(1+ARIV).
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F reference distribution for D1, along with K numerator and v1 denominator degrees of freedom.

For a = K (M − 1), the denominator degrees of freedom are calculated as

v1 =




4 + (a − 4)[1 + (1 − 2a−1) ARIV−1
1 ]2 if a > 4

(K + 1)(M − 1)(1 + ARIV−1
1 )2/2 otherwise

. (3)

In its original formulation, the degrees of freedom for D1 were derived under the

assumption of infinite complete-data degrees of freedom. Reiter (2007) proposed a correction

formula that adjusts the denominator degrees of freedom v1 for finite samples. The resulting test is

henceforth called D∗1. Calculating D1 and D∗1 requires pooling the point and variance estimates

across datasets, a task that is relatively simple and well documented (see Enders, 2010).

The D1 procedure is frequently recommended in the literature (e.g., Allison, 2001; Enders,

2010; Graham, 2012; Little & Rubin, 2002; Schafer, 1997; van Buuren, 2012). Li, Raghunathan,

and Rubin (1991) showed that D1 is reliable and robust unless the FMI is very large and variable

across parameters. Reiter (2007) showed that D∗1 produced accurate Type I error rates even in

small samples. Licht (2010) proposed an adjustment of D1 and replicated the favorable results of

Li, Raghunathan, and Rubin (1991) for finite samples and larger K . van Ginkel and Kroonenberg

(2014) illustrated the use of D∗1 in empirical datasets. However, simulation results regarding D1

and D∗1 are still relatively scarce, and van Buuren (2012) suggests evaluating them “in more

general settings” (p. 157). Enders (2010) found it “difficult to assess the trustworthiness of the D1

statistic in realistic research scenarios” (p. 236).

p values from Wald-like hypothesis tests (D2). Li, Meng, Raghunathan, and Rubin

(1991) developed a test statistic that is computed from a series of Wald tests (or their p values,
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equivalently) rather than from point and variance estimates. This is especially useful if K is large

or variance estimates (e.g., standard errors) are not available. Given a number of M Wald-like test

statistics Wm, the D2 statistic reads

D2 =
WK−1 − (M + 1)(M − 1)−1ARIV2

1 + ARIV2
, (4)

where W is the average test statistic across datasets and K is again the number of parameters that

represent group differences. The ARIV2 is another estimate of the average relative increase in

variance that is based solely on the individual test statistics Wm

ARIV2 = (1 + M−1)


1
M − 1

M∑
m=1

(√
W m −

√
W

)2
, (5)

where
√

W denotes the average
√

W m across the imputed datasets (see Enders, 2010). Li, Meng, et

al. (1991) proposed an F reference distribution for D2 with K numerator and v2 denominator

degrees of freedom

v2 = K−3/M (M − 1)(1 + ARIV−1
2 )2 . (6)

In order to apply D2, the individual test statistics (Wm) should follow a χ2 distribution.

Hence, in ANOVA models, the F values for all datasets (Fm) must be transformed such that

Wm = KFm, each of which approach a χ2 distribution as the denominator degrees of freedom go to

infinity. The D2 statistic is easily calculated by pooling the test statistics across datasets. No

specialized software or programming skills are required in order to calculate D2, and only the M

test statistics from the imputed datasets must be entered into the formulae, which are routinely

included in the output of most statistical software.
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However, the literature often advises against D2. Li, Meng, et al. (1991) suggested that it be

used only as a rough guide because its Type I error rates can be too high or too low depending on

the FMI. It is usually recommended that D1 be used whenever possible because D2 is less precise,

less powerful, and only loosely correlated with the “more nearly optimal” D1 (Schafer, 1997, p.

116; Enders, 2010; Little & Rubin, 2002). Nonetheless, D2 has been acknowledged for its ease of

implementation because it operates directly on the test statistics (e.g., Allison, 2001; Snijders &

Bosker, 2012). Van Buuren (2012) advised that D2 may be used if nothing but the test statistics

are available but that D2 is “considerably less reliable” than other pooling methods (p. 159).

Pooled likelihood-ratio tests (D3). Coming from the perspective of model comparison,

hypotheses about a set of parameters can be tested using likelihood-ratio tests (LRTs). The D3

procedure was developed by Meng and Rubin (1992) to enable LRTs with multiply imputed

datasets. The procedure does not require variance estimates; instead, it operates on the likelihood.

Meng and Rubin (1992) showed that it is not sufficient to simply combine the individual LRT

statistics Lm into an average L̄. In addition, the LRT statistic needs to be evaluated at the average

estimates of the model parameters for all imputed datasets. The D3 statistic reads

D3 =
L̃

K (1 + ARIV3)
, (7)

where L̃ is the mean LRT statistic across the imputed datasets evaluated at the average parameter

estimates, and K is the number of parameters being tested. Estimating the ARIV3 includes the

two pooled LRTs evaluated at the individual and pooled estimates, respectively (see Enders, 2010)

ARIV3 =
M + 1

K (M − 1)
(L̄ − L̃) . (8)
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According to Meng and Rubin (1992), the F reference distribution for D3 has K numerator and v3

denominator degrees of freedom. For a = K (M − 1),

v3 =




4 + (a − 4)[1 + (1 − 2a−1) ARIV−1
3 ]2 if a > 4

(K + 1)(M − 1)(1 + ARIV−1
3 )2/2 otherwise

. (9)

Calculating D3 can be tedious because it requires that users have access to the likelihood

function and that it is possible to evaluate it at user-defined values. Due to its complexity, the

procedure is not frequently used, but it has been implemented in likelihood-oriented software such

as Mplus (Asparouhov & Muthén, 2008), SAS (Mistler, 2013) and the semTools package for R

(Pornprasertmanit, 2014). The D3 statistic is frequently recommended when D1 cannot be

calculated, that is, in the absence of standard errors (Little & Rubin, 2002; van Buuren, 2012). It

has been argued that D1 and D3 should behave similarly, and more reliably than D2, because the

two are approximately equal (Meng & Rubin, 1992; Schafer, 1997). However, Enders (2010)

pointed out that “virtually no research studies have compared the two test statistics” (p. 241).

Present Study

Even though recommendations regarding D1, D∗1, D2 and D3 can be found in the literature,

the behavior of these methods is still not fully understood. Earlier studies focused on the general

properties of these methods, and simulation studies considered the FMI as a pivotal point (e.g., Li,

Meng, et al., 1991; Li, Raghunathan, & Rubin, 1991). Their usual recommendation is that, in

general, some procedures should be preferred (D1, D∗1, D3), while others should be avoided (D2).

However, in the present article, we argue that all of these methods provide suitable tests for

ANOVA models in most conditions that are encountered in psychological research. We conducted
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computer simulations that explore their performance from the perspective of practical research.

Our results are intended to complement the existing literature with results that can be easily

applied to practical research, and to assist researchers in their statistical decision making.

We examined the Type I error rates and the statistical power of the four pooling methods.

Study 1 features a fully crossed simulation design in which the number of groups, the group size,

the effect size, the missing data mechanism, and the amount of information available from an

auxiliary variable were varied. This design allowed us to examine possible interactions between

the simulation factors. However, in order to reduce computational effort, some of its conditions

had to be restricted. The conditions were chosen to mimic what frequently occurs in applications

of the ANOVA in psychological research. Two additional studies were conducted that relaxed

some of the restrictions made in Study 1. This made it possible to examine specific findings in

greater detail. Study 2a provides details on how including an auxiliary variable into the imputation

model may influence statistical power (Collins, Schafer, & Kam, 2001). For this purpose, we

varied the correlation between outcome and auxiliary variable in very fine steps, thus exploring

the conditions in which the ANOVA might benefit from using MI. In Study 2b, we examined the

effects of larger FMIs on the Type I error rates, that is, for larger amounts of missing data and given

different amounts of auxiliary information. In this context, we elaborate on the “link” between the

simulation factors and the FMI in our simulation design. This was deemed helpful for judging the

severity of missing data problems in research practice and for providing a reference frame for the

results of earlier studies. Study 3 extends the paradigm of Study 1 to two-factorial ANOVA

designs. In the two-factorial design we took special interest in testing the overall interaction effect,

which, especially in large ANOVA designs, may involve a large number of parameters.
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Study 1

The first simulation study was conducted to assess the performances of D1, D∗1, D2, and D3

under conditions that are commonly encountered in one-factorial ANOVA designs. All simulation

factors were fully crossed in order to examine the factors that drive the performance of these

methods.

Simulation Procedure

Data generating model. The ANOVA provided the foundation for the data generating

model. A continuous outcome Y was simulated from a normal distribution given the group means

µi for a factor A with groups i = 1, . . . , I, that is,

Y = µi + ε with ε ∼ N (0, σ2
ε ), (10)

where σ2
ε denotes the variance within groups. According to Cohen (1988), the variance of the

group means around the population mean (i.e., the grand mean) µ̄ can be defined as

σ
2
A =

∑I
i=1(µi − µ̄)

2

I
. (11)

The sum of the two variances (σ2
A and σ2

ε ) was defined to be one. The population mean was

assumed to be zero. Differences between groups were simulated according to Cohen’s (1988) f ,

here

f A =
σA

σε
. (12)

Thus, the two variances followed as
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σ
2
A =

f 2
A

1 + f 2
A

and σ
2
ε = 1 −

f 2
A

1 + f 2
A

. (13)

Different patterns of group means were simulated in order to mimic plausible research

scenarios. This was achieved by rephrasing all group means as µi = pidA, where the pi form a

pattern of group means pA = (p1, . . . , pI ) that sums to zero, and dA is a scaling factor that enlarges

this pattern so that it would imply the correct portions of variance as given by Equation 13. The

scaling factor dA was derived by rearranging Equation 11, which yields

dA = σA

√
I∑I

i=1 p2
i

. (14)

We simulated two patterns of group means labeled “difference” and “trend,” respectively, in which

either one third of the groups differed greatly from the others or all groups differed in such a way

that they formed a linear trend. For example, with I = 3 groups, the two patterns can be written

pA,difference = (−1/2, 1,−1/2) and pA,trend = (−1, 0, 1), respectively. To illustrate, suppose we

wanted to establish an effect of size f A = .40 forming a difference pattern pA = (−1/2, 1,−1/2).

This implies a variance of group means σ2
A = 0.16/1.16 = 0.14; thus, the scaling factor would

become dA = 0.37
√

3/(0.25 + 1 + 0.25) = 0.53. Finally, the group means µi would be

(−0.26, 0.53,−0.26).

A second continuous variable X was simulated to allow for different missing data

mechanisms and to mimic situations in which auxiliary information can be included in the

imputation model. The covariate X was simulated as

X = ρxy Y + εX with εX ∼ N (0, 1− ρ2
xy) , (15)
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where ρxy denotes the correlation between X and Y . Table 1 provides an overview of the

simulation design of all studies. In Study 1, we varied the number of groups (I = 3, 6, 12), the

sample size within each group (n = 25, 50, 100), the effect size ( f A = 0, .10, .25, .40), and the

correlation between X and Y (ρxy = 0, .35, .70).

Imposition of missing values. Missing data were imposed on the outcome Y , whereas the

covariate X and the group membership of each person were fully observed. Different missing data

mechanisms were defined according to Rubin (1976). In this classification, the hypothetical

complete data Y are divided into observed and unobserved portions, Yobs and Ymis, respectively.

An indicator variable R denotes which values in Y are observed. Rubin (1976) introduced several

broad classes of missing data mechanisms. If the missing values are simply a random sample of

the hypothetical completely observed Y , then the values are missing completely at random

(MCAR), that is, P(R|Yobs,Ymis) = P(R). If the chance of observing Y depends on the observed

data but does not further depend on the missing part, then the values are missing at random

(MAR), that is, P(R|Yobs,Ymis) = P(R|Yobs). The two are often called ignorable missing data

because the exact missing data mechanism need not be known in order to perform MI. Treating

nonignorable missing data requires making strong assumptions about the missing data mechanism

and thus was not considered in this study (see Carpenter & Kenward, 2013).

The missing values were simulated using a latent response variable R∗, which determined

whether values in Y were missing dependent on the covariate X under a linear model

R∗= λX + εR∗ where εR∗ ∼ N (0, 1 − λ2) . (16)

Values in Y were set missing if R∗< z, where z is a quantile of the standard normal distribution
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according to the desired probability of missing data (e.g., z = −0.67 for 25% missing data). As

presented in Table 1, we varied the effect of X on the latent response indicator to simulate

different missing data mechanisms. For Y to be MCAR, we set λ = 0, and for Y to be MAR given

X , we set λ = .35 or .70. The probability of missing data was held constant at 25% but was varied

in Study 2b. Note that our simulation design implicitly varies the FMI by varying population and

sample characteristics that influence the FMI. This is in contrast to previous studies, in which the

FMI was varied explicitly (e.g., Li, Meng, et al., 1991; Li, Raghunathan, & Rubin, 1991; Licht,

2010). As mentioned before, the simulation design was chosen to mimic situations that are

encountered in real-world applications of the ANOVA. Thus, we manipulated the severity of the

missing data problem in terms of the design factors (e.g., amount of missing data, presence of

auxiliary variables) rather than the FMI. This perspective was chosen so that the simulation design

would directly relate to research practice, whereas the FMI would occur only insofar as it emerged

from the simulated conditions.

Imputation and analysis. Imputations were carried out using the mice package (van

Buuren & Groothuis-Oudshoorn, 2011) in the statistical software R (R Core Team, 2014). The

“norm” imputation method was used; therefore, missing values on Y were assumed to be normally

distributed given the group membership and the covariate X . Following recent recommendations,

we created M = 100 imputed datasets for each simulated dataset (Bodner, 2008; Graham,

Olchowski, & Gilreath, 2007). However, all analyses were repeated with different subsets of M ,

that is, with the first 5, 10, 20, and 50 of the total 100 datasets, respectively (see Table 1). The

ANOVA model was fitted by dummy coding the grouping variable and regressing the outcome Y

on the K = I − 1 dummy variables. All methods—D1, D∗1, D2, and D3—were implemented in the

software R. The computer code is provided in the supplemental online material along with an
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example application to artificial data (see also Grund, Robitzsch, & Lüdtke, 2016). In addition,

listwise deletion (LD) was included as a strategy for handling missing data because it is still

frequently used in research practice.

We compared the pooling methods with respect to Type I error rates and their power to

detect nonzero effects. The Type I error rate is the relative frequency with which the null

hypothesis is rejected when the population effect ( f ) is zero. Ideally, the Type I error rate should

be close to the predefined significance level α (e.g., 5% or 1%). A procedure was considered

liberal or conservative when its Type I error rate was higher or lower, respectively, than the

nominal α. Bradley (1978) suggested a criterion for robustness, according to which Type I error

rates within α ± 0.5α are considered acceptable (e.g., within 2.5% and 7.5% for α = 5%). In

addition, we calculated the Type I error rates for the complete datasets (i.e., before imposing

missing values) to provide a benchmark for the different pooling methods. The statistical power is

the relative frequency with which the null hypothesis is rejected when the population effect is not

zero. Assessing differences in statistical power is difficult because the expected power is not a

fixed value for all conditions (Cohen, 1988). Thus, the expected power itself served as a

benchmark for the pooling methods.

Results

The first study featured six simulation factors and 648 conditions in total. All conditions

were replicated 10,000 times to ensure that the Type I error rates and the power to detect nonzero

effects had stabilized. Reporting all results was not feasible due to the large number of conditions

and because not all factors influenced the performance of the pooling methods. The complete

results for M = 100 imputations are provided in the supplemental online material, intended as a
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repository for interested readers. We focus on the “difference” pattern of group means, and

assume a level of α = 5% throughout this section. The results were similar for α = 1% and will be

discussed whenever necessary.

Type I Error Rate. In all conditions and for all pooling methods, the Type I error rates

varied within a reasonable range, that is, below 6.1% (D2) and above 4.2% (D3). Thus, no

violations of Bradley’s criterion for robustness were observed at α = 5%. Some methods were

found to be liberal in some cases (D1 and D2), whereas others were slightly conservative (D∗1 and

D3). The extent to which the pooling methods were conservative or liberal was mostly influenced

by the group size (n) and the number of groups (I). Figure 1 illustrates the Type I error rates of all

procedures for different group sizes and different numbers of groups, when the correlation

between X and Y (ρxy = 0) and the effect of X on missingness (λ = 0) were held constant.

The D1 statistic was slightly liberal in small samples (i.e., small n or I) but otherwise

provided nearly optimal results. The error rates obtained with D∗1 were nearly optimal under all

conditions. D2 was the most liberal of all pooling methods, but even for D2, the Type I error rates

were not seriously inflated. Contrary to D1, however, D2 remained somewhat liberal in larger

samples, especially when the number of groups was large. Finally, D3 produced reasonable Type I

error rates but was somewhat conservative if the number of groups was large and the groups were

relatively small (e.g., I = 12 and n = 25). Results obtained with LD were generally close to the

ideal solutions and usually close to those obtained with D∗1.

With increasing group size, the Type I error rates of the four pooling methods became more

similar; that is, D1 and to a lesser extent D2 became less liberal, whereas D3 became less

conservative. Effects of the number of groups were more diverse because an increase in I

increased both the sample size and the number of parameters of the global null hypothesis test.
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For D1, D∗1, and D3, an increase in I led to more conservative results. Type I error rates for D∗1

and D3 sometimes fell below those obtained from complete datasets and below the nominal α. D2

on the other hand remained somewhat liberal for larger values of I unless the group size was very

large in comparison (e.g., I = 12 and n = 25).

A lower level of α = 1% did not change the picture as a whole; that is, all pooling methods

performed similarly when compared with one another. Bradley’s criterion demands that Type I

error rates vary within 0.5% and 1.5% in this case. Type I error rates could be as high as 1.5%

(D1) for smaller groups, thus violating Bradley’s criterion for robustness, but they were usually

close to the nominal value in larger samples (see the supplemental online material).

Statistical power. Assessing the power of the pooling methods entailed certain limitations

due to floor and ceiling effects, that is, when the power approached 5% and 100%, respectively.

Differences between methods were found to be consistent regardless of effect size, but naturally,

these became smaller when the power approached its upper or lower bounds. Especially for large

effects ( f A = .40), choosing a particular method became less important because the power was

effectively 100% for all methods unless the samples were very small. Therefore, we will focus on

small and moderate effect sizes ( f A = .10 and .25) in order to describe the results on a scale that is

informative and meaningful for applied researchers (power between 60% and 80%).

The more liberal methods (D1 for smaller samples, D2) also scored highest in statistical

power. Most importantly, the power obtained with MI was higher than with LD whenever the

covariate X was somewhat informative about the missing values on Y , where a higher correlation

between X and Y (ρxy) led to higher power when MI was used. The effect of X on missingness (λ)

did not greatly influence the power by itself but moderated the aforementioned effects such that

higher values of λ intensified the differences between LD and MI (see Collins et al., 2001).
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Figure 2 illustrates the interplay of the correlation between X and Y and the effect of X on

missingness in larger samples (n = 100, I = 12, f A = .10). All pooling methods and LD were

equally capable of detecting nonzero effects when the covariate carried no information about the

missing outcome (ρxy = 0). As soon as the covariate provided information (ρxy = .35 or .70),

higher statistical power was observed when MI was used. Similar results were obtained for

moderate samples with small and large groups, as presented in Table 2. For small groups (n = 25,

I = 12, f A = .25), the more liberal pooling methods (D1 and D2) provided higher statistical

power. With larger groups (n = 50, I = 3, f A = .25), the difference between the pooling methods

became smaller. Again, higher power was observed for MI when the covariate provided

information about the missing Y . The conservative methods had lower power in general and thus

relied more heavily on such information. Nonetheless, even the conservative methods had higher

power than LD, given sufficient auxiliary information.

Number of imputed datasets. The number of imputations was varied within each

simulation condition in order to provide an insight into how the results would have changed if

fewer than M = 100 imputations had been used. The initial recommendation that M = 5

imputations would suffice for most applications of MI (Rubin, 1987) has been modified in the past

by several authors (e.g., Bodner, 2008; Graham et al., 2007; Harel, 2007).

Interpreting the effect of different values of M proved to be challenging because its effect

depended on the group size, the number of groups, the correlation between X and Y , and also

differed between pooling methods. Figure 3 shows the results for different M in selected

conditions. The results obtained with D1, D∗1, and D3 were relatively insensitive to the number of

imputations but were best when M was at least 20. For D2, however, the performance changed

substantially when more than 20 imputations were generated: Type I error rates from D2 became
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slightly higher, and statistical power was much larger with M > 20, especially when the number of

groups was large and the covariate X did not provide information about the missing Y (ρxy = 0).

With fewer imputations (M ≤ 20), D2 tended to be conservative and suffered from a substantial

loss of power. With a sufficient number of imputations, the power of the four methods was almost

identical.

Discussion

The first simulation study compared different pooling methods for testing the global null

hypothesis of the ANOVA with multiply imputed datasets. Differences emerged in terms of Type I

error rates: Some methods tended to be slightly liberal (D1 and D2) or conservative (D∗1 and D3),

but no procedure led to Type I error rates far above or below the nominal value. The liberal

methods also tended to detect nonzero effects more frequently. The biggest difference, however,

emerged between MI and LD when a covariate that provided information about the missing values

was included in the imputation model. In such cases, using MI could be highly beneficial whereas

potential losses from using MI when the covariate carried no information were not observed (see

Collins et al., 2001).

Our study was able to replicate previous findings on the performances of D1 and D∗1, which

were found to be stable and reliable in most cases (Li, Raghunathan, & Rubin, 1991; Reiter,

2007). Although seldom recommended, D2 provided very reasonable results within the scope of

the first study. Moreover, our results suggest that D2 is equally powerful as D1 and D∗1 when the

number of imputations is sufficiently large. This is in stark contrast to current recommendations

regarding D2, which suggest that D2 should generally be avoided because it was optimized for

M = 3 imputations, less powerful than D1, and unlikely to improve with larger M (Schafer, 1997;
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van Buuren, 2012). Our findings suggest that, due to its ease of application, D2 might be a viable

alternative in many applications of multiparameter tests, such as in the ANOVA, despite being

theoretically less convincing than D1. The D3 procedure also provided good results but was

unnecessarily conservative in small samples. Given that D3 is rather difficult to implement, we

believe that D1 and D∗1 are better choices for ANOVA models unless researchers intend to use

likelihood-based statistical software that already offers D3 (see Enders, 2010). Care should be

taken when the pooling methods are applied under more extreme conditions. The D2 procedure

was slightly more liberal when the number of groups I (and hence the number of parameters) was

large. In such cases, D3 was quite conservative unless the groups were very large in comparison.

Several limitations are noteworthy. First, due to the large simulation design, not all factors

could be varied in very great detail. The simulation suggested that MI benefits when information

about the missing values is available, but, at this point, it is unclear how much information a

covariate must provide in order to be helpful. Thus, the purpose of Study 2a was to explore the

potential gains in statistical power. Second, we chose a fixed value for the probability of missing

data. The chosen value of 25% is quite large for many applications of the ANOVA, but the number

of missing values can sometimes be higher depending on how the data were collected (e.g.,

Graham, Taylor, Olchowski, & Cumsille, 2006). Especially D2 has been shown to be sensitive to

very small and large values of the FMI (Li, Meng, et al., 1991). In order to close the gap between

our results and the existing literature, it must be elaborated upon how the amount of missing data

and the presence of auxiliary variables influence the FMI and, as a result, the robustness of the

pooling methods. This was the purpose of Study 2b. Finally, Study 1 was limited to one-factorial

ANOVA designs. Therefore, Study 3 was conducted, which extended the paradigm of Study 1 to

two-factorial ANOVA designs and the test of interaction effects.
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Study 2a

To examine the effects of including a more or less useful covariate in the imputation model,

we varied the correlation between X and Y in steps of .05, ranging from ρxy = 0 to ρxy = .95.

Either 25% or 50% missing values were introduced into the dataset. The remaining factors were

held constant, as shown in Table 1. One hundred imputations were created. These values were

chosen to reflect practical research but also to avoid influences of sampling error and boundary

conditions. The results were cross-checked for different conditions, but the main pattern of results

was found to be comparable.

Figure 4 shows the statistical power to detect moderate effects ( f A = .25) for all pooling

methods and LD as a function of the strength of the relationship between the covariate and the

outcome (ρxy). The performance of the pooling methods differed only when the correlation was

small and became increasingly similar as the correlation grew larger. This is not surprising

because the FMI was largest when X and Y were uncorrelated (see Study 2b). Listwise deletion

was comparably powerful as long as X was only weakly correlated with Y . For larger values of the

correlation (ρxy = .35 and above), the pooling methods consistently outperformed LD in terms of

statistical power. Whereas the advantages of using MI remained modest for correlations below

.50, larger correlations greatly improved statistical power. When 50% of the data were missing,

the differences between the pooling methods grew larger, especially when X and Y were only

weakly correlated. In this case, D2 appeared to be more powerful than D1 and D∗1, and D3

appeared to be less powerful, essentially reflecting differences in Type I error rates.

This illustrates that the conclusions of Study 1 cannot be generalized to arbitrarily harsh

conditions, and that more severe missing data problems must be met with more sophisticated
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methods (e.g., D1 or D∗1). Previous research has expressed these conditions in terms of the FMI.

In Study 2b, we elaborate on how the FMI is related to the amount of missing data and auxiliary

information, and how one’s assessment of the missing data problem may guide one’s choice

among the pooling methods.

Study 2b

The FMI in our study was influenced by the amount of missing data and the correlation

between X and Y . Figure 5 illustrates the relationship between these measures in our study. If

auxiliary information was not available (ρxy = 0), then the FMI was equal to the amount of

missing data. Therefore, the FMI could be manipulated directly when ρxy = 0 by varying the

missing data rate. However, if the covariate is predictive of the missing values, then the FMI is

lowered depending on the strength of that relationship. In other words, the missing data problem

becomes less severe the more information can be included into the imputation model. In Study 1,

the missing data rate was fixed to 25%, which is already quite large for many applications of the

ANOVA. As can be seen from Figure 5, this corresponds to an FMI of only .25 if ρxy = 0, or less

if ρxy = .35 or .70. In earlier studies, values for the FMI up to .50 were often considered (see

Figure 4). In Study 2b, we investigated the effects of the FMI more thoroughly by including

different portions of missing data, ranging from 5% to 80% in increments of 5%, as well as

different values for the correlation of X and Y , effectively varying the FMI between .03 and .80

(see Table 1). Type I error rates were calculated for each condition.

Figure 6 shows the Type I error rates for all methods in smaller and larger samples, given

different amounts of missing data and a more or less useful covariate. D1 and D∗1 were robust even

when large portions of data were missing and when the covariate did not provide information
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about the missing data. In such extreme cases, as predicted by Li, Meng, et al. (1991), D2 was less

reliable, and increasingly liberal in larger samples. The results remained acceptable for up to 50%

missing data, at which point Bradley’s liberal criterion for robustness was violated (FMI of .50).

However, if the correlation between X and Y was large, then D2 was more reliable, and the results

remained acceptable for up to 65% missing data (also FMI of .50). Notice that, in smaller

samples, D2 became less liberal again when the amount of missing data became very large (above

70%)2. Surprisingly, D3 was also affected by larger FMIs such that, for large amounts of missing

data (above 40%), D3 became more and more conservative. These results occurred most strongly

in smaller samples, where results remained acceptable for up to 65% missing data when X

provided no information about Y . This effect too became smaller as the correlation between X and

Y grew larger.

Study 3

The third study was conducted in order to assess whether our results could be generalized to

two-factorial ANOVA designs and, in particular, to tests of the interaction effect. For this purpose,

we extended the procedure of Study 1 to two-factorial designs in which two factors A and B, with

I and J levels, respectively, could influence the outcome Y . The two main effects and the

interaction effect were each assigned an effect pattern, denoted pA, pB and pAB, respectively, and

an effect size, denoted f A, f B and f AB, respectively. The difference pattern was employed for the

two main effects. The interaction effect was defined in a similar fashion such that groups on the

2The behavior of D2 for large FMIs appeared to be a result of two compensatory mechanisms. Liberal behavior
of D2 was associated with F-values slightly larger than 1. The inflation of F values was associated with values of
the ARIV2 that were lower than the respective ARIV1 (see Equation 4), especially in larger samples. Conservative
behavior of D2, on the other hand, seemed to be induced by the denominator degrees of freedom, v2, which tended to
be smaller than v1, and noticeably so in smaller samples (see the first term in Equation 6; cf. Equations 3 and 9).
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main diagonal of the I × J design would have larger values in Y compared to the off-diagonal

groups. Scaling factors for each pattern were derived by the same logic as in Study 1. We chose

similar values for the remaining simulation factors, as can be seen in Table 1. We examined the

interaction effect in a 3 × 3 and 5 × 5 design with a different number of persons per group. Since

the total sample size increased rapidly with I and J, we simulated smaller groups of size 10, 30

and 50, respectively, so that the range in total sample size was similar to Study 1.

The results for the main effects were consistent with those of Study 1. Therefore, we only

report our findings concerning the interaction effect, that is, the Type I error rates if f AB = 0

(α = 5%) and the power to detect nonzero interaction effects, given that the main effects were both

zero. The test of the interaction effect involved 4 parameters in the 3 × 3 design and 16 parameters

in the 5 × 5 design. Larger designs were not considered because they are rarely found in practice.

Figure 7 shows the Type I error rates obtained from the different pooling methods and LD

when all effects are zero, and ρxy = 0 as well as λ = 0. For moderate (n = 30) and larger groups

(n = 50) all methods were found to be robust. As in Study 1, the Type I error rates of D1 and D2

were slightly above those of D∗1 and D3. For smaller groups (n = 10), D1 and D2 were found to be

somewhat liberal in the 3× 3 design (5.7% and 5.8%) and slightly conservative in the 5× 5 design

(4.8% and 4.1%), whereas D∗1 and D3 performed conservatively in both cases (4.9% and 4.0% in

the 3 × 3 design; 4.1% and 2.8% in the 5 × 5 design, respectively).

Similar differences were observed for the power to detect nonzero interaction effects, as is

shown in Table 3. For smaller groups (n = 10, I = J = 5), D1 and D2 had greater power to detect

nonzero interaction effects, whereas D∗1 and especially D3 were less powerful; a pattern that was

most pronounced if the covariate X did not provide information about the missing data (ρxy = 0).

For moderate groups (n = 30, I = J = 3), the differences between the pooling methods were much
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smaller. In comparison with LD, and in larger samples, the power of the pooling methods was low

if the covariate did not provide information about the missing values (ρxy = 0), but higher than

with LD if the covariate was predictive of the missing data (ρxy = .70). In smaller samples, such

low power was only observed for D3. The missing data mechanism did not influence the power

obtained with the pooling methods, but LD showed lower power if Y was MAR (λ = .70).

General Discussion

By means of Monte Carlo simulation, we examined the performance of different pooling

methods for the global null hypothesis test of the ANOVA with multiply imputed datasets. The

goal of the present article was to complement the existing literature with simulation results that

argue from the perspective of applied researchers. Similar to previous studies, we can conclude

that D1 and D∗1 are the most reliable pooling methods available and that D3 behaves similarly in

larger samples. However, we found that the use of D2, at least for hypothesis tests in the ANOVA,

is perfectly supported by many conditions that commonly occur in research practice. All pooling

methods provided large potential gains over LD in terms of statistical power when a useful

covariate could be included in the imputation model, provided that the number of imputations was

sufficiently large. Whereas the increase in statistical power depended on the presence of useful

covariate information, there was usually no harm in using MI when the covariate did not provide

any information at all. We hope that the simulation approach taken in this study will aid

researchers in judging the severity of the missing data problem and in choosing the procedure

which is the most fitting for their purpose.

In general, D1 and D∗1 provided the most reliable hypothesis tests for the ANOVA, which

replicates what previous studies concluded about D1. Their Type I error rates varied within a
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small range around the optimal value, and reasonable gains in statistical power arose from

including auxiliary variables. The slightly liberal behavior of D1 was limited to small samples.

Both methods appeared to be reliable even when large portions of data were missing.

The D2 procedure performed well in Study 1 and Study 3. We observed similar gains in

statistical power for D1 and D2, but the power of D2 was much lower if the number of imputed

datasets was not large enough. However, unlike previous research suggested, the power of D2

improved drastically when the number of imputations was increased and was ultimately equal to

that of D1 (cf. Schafer, 1997; van Buuren, 2012). In line with previous research, we found that

when the FMI was large, the robustness of D2 was compromised (see Li, Meng, et al., 1991). Our

simulation study suggests that researchers should refrain from using D2 if large portions of the

data are missing and no auxiliary variables can be included to compensate for the loss of

information (e.g., 50% missing data, low correlation with other variables); the more information

is supplied by covariates, the more missing data may be tolerated by D2. All in all, the D2 statistic

appeared to be a reasonable choice for most applications of the ANOVA in psychological research.

This is an encouraging result for applied researchers because D2 is very easy to calculate using the

test statistics alone, without requiring specialized software or programming experience.

The likelihood-based D3 procedure performed well in most conditions, but it was quite

conservative unless the samples were very large. This behavior was intensified if large portions of

the data were missing. In general, the D3 statistic can be recommended; however, at least for

hypothesis tests in the ANOVA, larger gains in statistical power can be obtained using D1, D∗1 and

D2, which are often easier to implement.

Our results also have important implications for applications of MI in which large portions

of the data are missing, for example, in “planned missing data” designs (Graham et al., 2006). In
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such designs, both MI and LD provide approximately unbiased parameter estimates because the

data are MCAR. However, based on our results, it seems crucial that “planned missing data”

designs include auxiliary variables which are correlated with the variables of interested, thus

providing more informed imputations of missing values. Otherwise, analyses based on MI will be

no more efficient than those based on LD (see Rhemtulla, Savalei, & Little, 2016). In other words,

hypothesis tests based on MI can be much more powerful than those based on LD, but only if

useful covariates are available that can be included in the imputation model.

As is true for any computer simulation, our study was limited in a number of ways. First, the

complex simulation design limited the number of levels that could be studied for each factor in a

fully crossed manner. In Study 1, we fixed the probability of missing data to 25%, and most other

factors had a small number of levels. We addressed this problem by varying some simulation

factors in two additional studies to explore their effects in better detail. Nonetheless, not all

conditions were fully crossed, and therefore our results should not be generalized too readily to

the vast diversity of conditions that can occur in practical research. Second, likelihood-based

methods may be considered, which offer some advantages over LD, for example, to include

auxiliary variables or to condition on possible causes of missing data (see Enders, 2010; Little &

Rubin, 2002; von Hippel, 2007). Third, we assumed the covariate and the grouping variable to be

fully observed at all times. This is often unlikely in practice, in which case, more general missing

data methods must be considered (e.g., Enders, 2008; Little, 1992). Even though imputation itself

was of minor interest in our study, results may differ for multivariate missing data problems.

Finally, there are further alternatives to the four pooling methods considered here and they should

be subjects of future research. Raghunathan and Dong (2011) proposed a pooling method which

is solely based on the sum of squares. Variations and applications of D1 and D3 have been
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considered by Licht (2010), Kientoff (2011), and Consentino and Claeskens (2010).

In future studies, researchers may wish to address ANOVA designs with multiple or nested

factors, interaction effects, repeated measurements, or random effects (see van Ginkel &

Kroonenberg, 2014). Effect size measures should be considered to allow for a more exhaustive

treatment of missing data in ANOVA designs (Harel, 2009). However, the procedures featured in

our study are not limited to the ANOVA. In structural equation modeling, researchers may utilize

the same procedures that are featured in our study for various multiparameter tests with multiply

imputed data (see Enders, 2010, for an overview). We believe that all pooling methods have good

potential for reliable and efficient statistical inference when faced with missing data. The

computer code for these methods is provided in the supplemental online material. We encourage

researchers to use and extend these methods to thereby promote a wider application of missing

data methods in psychology and the social sciences.
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Table 1
Simulation Design of the Different Simulation Studies

Design conditions Study 1 Study 2a Study 2b Study 3

Group size (n) 25, 50, 100 25 25, 100 10, 30, 50

Levels of A and B (I, J) 3, 6, 12 12 12 3 × 3, 5 × 5

Main effect A ( fA) 0, .10, .25, .40 .25 0 0, .10, .25

Main effect B ( fB) – – – 0

Interaction effect ( fAB) – – – 0, .10, .25

Effect patterns difference, trend difference difference difference

Correlation XY (ρxy) 0, .35, .70 0, .05, . . . , .95 0, .20, .35, .50, .70, .90 0, .35, .70

MD effect of X (λ) 0, .35, .70 0 0 0, .35, .70

MD probability 25% 25%, 50% 5%, 10%, . . . , 80% 25%

Number of Imputations 5, 10, 20, 50, 100 100 100 5, 10, 20, 50, 100

Note. The correlation ρxy and the MD probability were varied in steps of .05 and 5% in Studies 2a and 2b,
respectively. MD = missing data.
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Table 2
Power to Detect Nonzero Effects (α=5%) for all Pooling Methods and LD

λ = 0 λ = .70

LD D1 D∗1 D2 D3 LD D1 D∗1 D2 D3

n = 25, I = 12, fA = .25 (PE = .836)

ρxy = 0 .683 .687 .669 .692 .658 .675 .680 .664 .685 .649
ρxy = .35 .675 .697 .682 .702 .674 .662 .698 .679 .711 .668
ρxy = .70 .677 .761 .747 .756 .749 .630 .758 .744 .762 .745

n = 50, I = 3, fA = .25 (PE = .780)

ρxy = 0 .644 .646 .635 .649 .634 .645 .646 .635 .648 .631
ρxy = .35 .649 .671 .660 .668 .658 .631 .654 .644 .660 .640
ρxy = .70 .640 .704 .694 .704 .695 .611 .713 .704 .720 .703

Note. PE = power expected; n = group size; I = number of groups; fA = size of main effect A; ρxy =
correlation between X and Y ; λ = effect of X on missingness; D1, D∗1, D2, D3 = pooling methods; LD =
listwise deletion.
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Table 3
Power to Detect Nonzero Interaction Effect (α=5%) in a Two-Factorial Design for all Pooling
Methods and LD

λ = 0 λ = .70

LD D1 D∗1 D2 D3 LD D1 D∗1 D2 D3

n = 10, I = J = 5, fAB = .25 (PE = .653)

ρxy = 0 .489 .447 .415 .427 .355 .488 .438 .407 .435 .340
ρxy = .35 .488 .464 .430 .447 .394 .476 .448 .415 .458 .362
ρxy = .70 .474 .530 .500 .504 .508 .470 .543 .505 .546 .516

n = 30, I = J = 3, fAB = .25 (PE = .922)

ρxy = 0 .803 .805 .802 .808 .796 .817 .815 .809 .822 .800
ρxy = .35 .807 .818 .809 .814 .806 .800 .817 .810 .820 .806
ρxy = .70 .797 .870 .863 .871 .866 .791 .880 .877 .888 .878

Note. PE = power expected; n = group size; I = number of groups by factor A; J = number of groups by
factor B; fAB = size of interaction effect; ρxy = correlation between X and Y ; λ = effect of X on
missingness; D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.
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Figure 1. Type I error rates for different pooling methods and LD (α = 5%) depending on group

size (n) and number of groups (I), given MCAR data (λ = 0) with no auxiliary information

(ρxy = 0). The grey boxes indicate the Type I error rates obtained from complete datasets. D1,

D∗1, D2, D3 = pooling methods; LD = listwise deletion.
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Figure 2. Power to detect nonzero main effect ( f A = .10) in larger samples (n = 100, I = 12)

depending on the missing data mechanism. The expected power is indicated by a dashed line.

ρxy = correlation between X and Y ; λ = effect of X on missingness; D1, D∗1, D2, D3 = pooling

methods; LD = listwise deletion.
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Figure 3. Type I error and statistical power of all pooling methods depending on the numbers of

imputations. I = number of groups; n = group size; ρxy = correlation between X and Y ; f A = size

of main effect A; D1, D∗1, D2, D3 = pooling methods.
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Figure 4. Power to detect main effect for all pooling methods and LD depending on the

correlation between X and Y and the amount of missing data. The expected power is indicated by

a dashed line. I = number of groups; n = group size; f A = size of main effect A; ρxy = correlation

between X and Y ; D1, D∗1, D2, D3 = pooling methods; LD = listwise deletion.
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Figure 5. Estimates of the FMI obtained from D1 in larger samples (n = 100, I = 12) with zero

main effect ( f A = 0) depending on the amount of missing data and the correlation between X and

Y . FMI = fraction of missing information; ρxy = correlation between X and Y .
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Figure 6. Type I error rates of all pooling methods and LD in moderate and larger samples

dependent on the amount of missing data and the correlation between X and Y . The grey area

indicates the Type I error obtained from complete datasets. I = number of groups; n = group size;

ρxy = correlation between X and Y ; FMI = fraction of missing information; D1, D∗1, D2, D3 =

pooling methods; LD = listwise deletion.
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Figure 7. Type I error rates for different pooling methods and LD (α = 5%) for the interaction

effect in the two-factorial design, depending on group size (n) and number of groups per factor

(I = J). The grey boxes indicate the Type I error rates obtained from complete datasets. D1, D∗1,

D2, D3 = pooling methods; LD = listwise deletion.


