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Article

In recent years, multilevel models have become one of the 
standard tools for analyzing clustered empirical data. Such 
data often occur in organizational and educational psychol-
ogy and other fields of the social sciences; for example, 
when employees are nested within work groups, students are 
nested within school classes, or in longitudinal studies when 
measurement occasions are nested within persons. In addi-
tion, empirical data are often incomplete, for example, when 
participants drop out of the study or do not answer all of the 
items on a questionnaire. Several authors have advocated the 
use of modern missing data techniques such as multiple 
imputation (MI) rather than traditional approaches such as 
listwise or pairwise deletion (Allison, 2001; Enders, 2010; 
Newman, 2014; Schafer & Graham, 2002; van Buuren, 
2012). One central requirement of MI is that the imputation 
model must be at least as general as the model of interest to 
preserve relationships among variables (Enders, 2010). In 
the case of incomplete multilevel data, it is important that the 
imputation model takes the multilevel structure into account 
to ensure valid statistical inferences in subsequent multilevel 
analyses (Black, Harel, & McCoach, 2011; Graham, 2012; 
van Buuren, 2011).

Although MI is gaining popularity among applied 
researchers, multilevel imputation models are rarely used in 
practice. One of the most commonly recommended software 
solutions for multilevel imputation is the pan package 
(Schafer & Yucel, 2002; Schafer & Zhao, 2014), which is 

freely available in the statistical software R (R Core Team, 
2015; see also Culpepper & Aguinis, 2011). However, the 
application of pan can be challenging, and its documentation 
is rather technical, especially for users who are not familiar 
with R. For instance, for multilevel missing data, Graham 
(2012) recommended “that you obtain a copy of the PAN pro-
gram (…), and that you find an expert in R who can help you 
get started” (p. 137).

The present article is intended as a gentle introduction to 
the pan package for MI of multilevel missing data. We 
assume that readers have a working knowledge of multilevel 
models (see Hox, 2010; Raudenbush & Bryk, 2002; Snijders 
& Bosker, 2012). To make pan more accessible to applied 
researchers, we make use of the R package mitml, which 
provides a user-friendly interface to the pan package and 
some additional tools for organizing and analyzing multiply 
imputed data (Grund, Robitzsch, & Lüdtke, 2016). The first 
section of this article introduces an empirical example that is 
used for illustrating the application of pan to multilevel data. 
In the following section, we briefly describe the main ideas 
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behind pan and MI, and we discuss which features of multi-
level models must be considered when conducting MI. 
Finally, we use the mitml package to carry out MI for the 
empirical example. In that context, we will discuss possibili-
ties for model diagnostics and tests of statistical hypotheses 
(e.g., model constraints, model comparisons).

Multilevel Modeling: An Empirical 
Example

Multilevel models account for dependencies in the data and 
allow relationships between variables to be estimated at dif-
ferent levels of analysis or effects that may vary across higher 
level observational units. For the purpose of this article, we 
assume that the multilevel structure consists of persons (e.g., 
students, employees) nested within groups (e.g., classes, 
work groups). If only the regression intercept varies across 
groups, the model is referred to as a random-intercept model. 
For example, Chen and Bliese (2002) examined the effects of 
individual characteristics (e.g., psychological strain) and 
leadership climate on the self-efficacy of U.S. soldiers. 
Kunter, Baumert, and Köller (2007) investigated the effects 
of student- and group-level ratings of classroom manage-
ment on students’ interest in mathematics. If the effects of 
additional predictor variables vary across groups, the model 
is referred to as a random-slope or random-coefficients 
model. For example, Hofmann, Morgeson, and Gerras (2003) 
investigated varying effects of leader-member exchange on 
safety behavior across work teams in the U.S. army.

The example data set used in this article is from the field 
of educational research and was taken from the German sam-
ple of primary school students who participated in the 
Progress in International Reading Literacy Study (PIRLS; 
Bos et al., 2005; Mullis, Martin, Gonzales, & Kennedy, 
2003). The data set includes test scores in both mathematics 
(MA) and reading achievement (RA), a measure of cognitive 
ability (CA), a measure of socioeconomic status (SES), stu-
dents’ ratings of the quality of teaching in their math and 
reading classes (the prevalence of disciplinary problems), 
and ratings of the general learning environment (school cli-
mate). For the purpose of this article, we considered only 

students for whom RAand CA scores were available, which 
was true for approximately 99.3% of the sample (8,767 stu-
dents in 475 classes). Ratings of disciplinary problems in 
math classes (DPM) were missing for half of the sample due 
to a planned missing data design (Graham, Taylor, Olchowski, 
& Cumsille, 2006). Table 1 provides an overview of the data 
set, along with the observed correlations and the percentages 
of missing values among variables. Some variables contain 
additional, unplanned missing data. In such cases, it is useful 
to examine the missing data patterns that occur in the data 
set. This is shown in Table 2. Approximately 50% of the 
sample adhered to the planned missing data design (Patterns 
1 and 2). In another 25% of the sample (Patterns 3 and 4), 
SES was additionally missing. The remaining patterns were 
more diverse, and data were missing for MA scores, disci-
plinary problems in reading classes (DPR), or school climate 
(SC). Planned missing data designs are becoming increas-
ingly popular in large-scale observational studies because 
such designs can reduce the burden that is placed on each 
individual participant (Graham et al., 2006). The missing 
data mechanism is usually ignorable for variables recorded 
in this manner, thus enabling us to focus on more specific 
aspects of MI in multilevel research.

Example 1: Random-Intercept Model

Our first model of interest examined the effect of teaching 
quality in math classes (disciplinary problems; DPM) on stu-
dents’ MA scores. In addition, we included SES to control for 
differences in socioeconomic background between students 
and classes. The student-level variables were centered around 
the group mean, and the group means were included as pre-
dictor variables to separate within-group from between-
group effects (see Enders & Tofighi, 2007; Raudenbush & 
Bryk, 2002). For student i  in class j,  the model reads

 

MA DPM DPM

DPM SES SES

SES

ij ij j

j ij j

j j i

= 0 1

2 3

4 0

β β

β β

β υ ε

+ −( ) +
+ −( ) +

+ + jj .

 (1)

Table 1. Pairwise Observed-Data Correlations Among Variables and Amount of Missing Data.

MA RA CA SES DPM DPR SC

MA .528 .530 .232 −.234 −.238 −.217
RA .493 .299 −.291 −.294 −.327
CA .240 −.265 −.251 −.221
SES −.154 −.155 −.123
DPM .782 .399
DPR .419
Missing Data 19.4% 0% 0% 35.0% 61.4% 21.5% 21.7%

Note. MA = math achievement; RA = reading achievement; CA = cognitive ability; SES = socioeconomic status; DPM = disciplinary problems in math class; 
DPR = disciplinary problems in reading class; SC = school climate.
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Here, the β  coefficients denote fixed effects, and υ0 j  and 
εij  denote the residuals at the class and student level, 
respectively. We refer to the effects of the average DPM 
and SES of a class as between-group effects, whereas 
within-group effects account for the students’ individual 
deviations from that average. For example, β4  denotes 
the effect of a class’ average SES on class-level MA, 
whereas β3  denotes the effect of students’ individual 
deviations from the class average on their individual MA 
scores. The class- and student-level residuals are each 
assumed to be distributed normally, independently and 
identically, with zero mean and variances Var j( )0υ  and 
Var ij( )ε ,  respectively.

Example 2: Random-Slope Model

Our second model of interest examined the relationship 
between students’ CA and their MA scores. We assumed that 
the relationship between the two variables would vary across 
groups (random slope) because some teachers may nurture 
students’ individual strengths and weaknesses, whereas others 
may strive to “equalize” them. As before, we included SES to 
control for differences in socioeconomic background. In line 
with recent recommendations for analyzing random-slope 
variation, we centered the variables around the group means 
(Aguinis, Gottfredson, & Culpepper, 2013; Hofmann & 
Gavin, 1998). The group means were included as additional 
predictors to “reintroduce” the group-level part into the model. 
The model reads,

 

MA CA CA CA

SES SES SES

CA

ij ij j j

ij j j

j j

= 0 1 2

3 4

0 1

β β β

β β

υ υ

+ −( ) + +

−( ) + +

+ iij j ij−( ) +CA ε ,
 (2)

where υ1 j  denotes the random effect of CA on MA per class. 
The two random effects (intercept and slope) are assumed to 
follow a multivariate normal distribution, independently and 
identically across classes, and the remaining notation is the 
same as above.

Table 2. Frequent Missing Data Patterns.

Pattern MA RA CA SES DPM DPR SC Cases # Relative % Cumulative %

1 o o o o x o o 2,306 26.3 26.3
2 o o o o o o o 2,134 24.3 50.6
3 o o o x x o o 1,173 13.4 64.0
4 o o o x o o o 1,125 12.8 76.9
5 x o o o x x x 1,027 11.7 88.6
6 x o o x x x x 622 7.1 95.7

Note. The patterns displayed here account for ≥95% of the sample. MA = math achievement; RA = reading achievement; CA = cognitive ability;  
SES = socioeconomic status; DPM = disciplinary problems in math class; DPR = disciplinary problems in reading class; SC = school climate;  
o = observed; x = missing.

MI of Incomplete Multilevel Data

Missing data could be addressed by restricting the analyses 
to completely observed cases (listwise deletion, LD). 
However, this approach is more likely to suffer from low 
power and to give biased results (e.g., Little & Rubin, 2002; 
see also Newman, 2014). MI has become one of the preferred 
methods for overcoming these problems (Rubin, 1987; 
Schafer & Graham, 2002). Using MI, a number of replace-
ments for the missing data are drawn from the distribution of 
the missing values, given the observed data and an imputa-
tion model. The completed data sets are then analyzed sepa-
rately, and the results are combined across data sets to form 
final parameter estimates and inferences (see Enders, 2010, 
for details about the general MI procedure).

General Aspects of MI

In most applications of MI, the data are assumed to be miss-
ing at random (MAR), a notion that was introduced by Rubin 
(1976) in his well-known classification of missing data mech-
anisms. Consider the hypothetical complete data matrix Y  
which is decomposed into observed and unobserved portions, 
Y Y Y= ( , )obs mis .  An indicator matrix R  denotes whether 
values are observed or missing. If the missing data are simply 
a random sample of the hypothetical complete data, that is, 
P P( | ) = ( )R Y R ,  then the data are missing completely at 
random (MCAR). One such scenario occurs in planned miss-
ing data designs, where missing values are “assigned” ran-
domly to each participant. If the occurrence of missing 
data depends on the observed data but missing data occur 
“at random” with these taken into account, that is, 
P P( | ) = ( | )R Y R Yobs ,  then the data are MAR. The two 
missing data mechanisms MCAR and MAR are often called 
“ignorable” because the exact missing data mechanism need 
not be known to perform MI (for a more general discussion of 
the role of “ignorability,” see Enders, 2010). If neither condi-
tion holds, that is, P P( | ) = ( | , )R Y R Y Yobs mis ,  then the data 
are missing not at random (MNAR). Most software imple-
mentations of MI rely on the assumption that the data are 
MAR. Performing MI under MNAR is possible but requires 
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making strong assumptions about the missing data mecha-
nism and is most often used for sensitivity analyses (see 
Carpenter & Kenward, 2013). To enhance the plausibility of 
the MAR assumption, it has been suggested that auxiliary 
variables be included in the imputation model. These vari-
ables are related to either the propensity of missing data or the 
variables with missing values themselves, without necessar-
ily being part of the model of interest (Collins, Schafer, & 
Kam, 2001). In our empirical example, some data are missing 
by design and are thus MCAR. For the remaining data, we 
will assume that the data are MAR, given the observed por-
tions of the data that can be included as auxiliary variables.

Furthermore, the imputation model must be at least as 
complex as the analysis model. If variables or parameters 
that are relevant for the analysis model are not included in 
the imputation model, then the procedure could yield biased 
results (Meng, 1994; Schafer, 2003). For example, assume 
that a researcher is interested in testing an interaction between 
two variables in a multiple regression analysis with partially 
missing data. In this case, it would be important that the 
interaction effect (i.e., product term) is incorporated in the 
imputation model (Enders, Baraldi, & Cham, 2014). 
Similarly, if one is interested in estimating the intraclass cor-
relation (ICC; that is, the variance within and between 
groups) with incomplete data, it would be crucial to take into 
account the clustered data structure (Taljaard, Donner, & 
Klar, 2008). If the model of interest includes random slopes, 
then the imputation model should allow for different slopes 
across groups. Choosing an appropriate imputation model 
can be challenging, and it may be tempting to resort to ad hoc 
methods for treating multilevel missing data (Graham, 2012). 
For example, it has been suggested that the multilevel struc-
ture be represented by creating a set of dummy-indicator 
variables (Drechsler, 2015; Graham, 2009; White, Royston, 
& Wood, 2011). In this approach, the dummy indicators are 
included in the single-level imputation model, and a separate 
intercept (or fixed effect) is estimated for each group. 
However, recent simulation research has indicated that such 
methods can distort parameter estimates and standard errors 
in multilevel analyses (Andridge, 2011; Enders, Mistler, & 
Keller, 2016; Lüdtke, Robitzsch, & Grund, in press).

Two broad approaches to performing MI can be distin-
guished. In the joint modeling approach, a single statistical 
model is used for imputing all incomplete variables simulta-
neously (e.g., Schafer & Yucel, 2002). In contrast, in the fully 
conditional specification of MI, each variable is imputed in 
turn using a sequence of imputation models (van Buuren & 
Groothuis-Oudshoorn, 2011). In the present article, we focus 
on the pan package, which follows the joint modeling para-
digm (for a discussion, see Carpenter & Kenward, 2013).

The Multivariate Linear Mixed-Effects Model

The statistical model underlying the pan package is a multi-
variate extension of regular (univariate) multilevel models; 

that is, it represents multiple dependent variables simultane-
ously. In addition, the model may feature a number of predic-
tor variables with associated fixed and random effects. In the 
following, we refer to this model as the multivariate linear 
mixed-effects model (MLMM, see Schafer & Yucel, 2002). 
The model reads,

 y x z b eij ij ij j ij= ββ + + ,  (3)

where yij  is the (1 )× r  vector of responses for person i  in 
group j,  xij  and zij  are (1 )× p  and (1 )×q  vectors of 
covariate values, ββ  is a ( )p r×  matrix of fixed effects, b j  
is a ( )q r×  matrix of random effects, and eij  is a (1 )× r  
vector of residuals. In most cases, the matrix zij  contains a 
subset of the values in xij ,  and both will contain at least a 
“one” for the regression intercept. The random-effects 
matrix b j ,  with columns stacked upon another, is assumed 
to follow a normal distribution with mean zero and covari-
ance matrix ΨΨ,,  independently and identically for all groups. 
The vector of residuals eij  is assumed to follow a normal 
distribution with mean zero and covariance matrix Σ, inde-
pendently and identically for all individuals. The MLMM 
imputes all variables on the left-hand side of the model 
equation given the variables on the right-hand side (with 
fixed and random effects). Only the variables on the left-
hand side (i.e., in yij ) may contain missing values, whereas 
the variables on the right-hand side must be completely 
observed (i.e., in xij  and zij ). In the following, we will dis-
tinguish between two broad approaches to MI of incomplete 
multilevel data using pan’s MLMM (see Table 3 for an 
illustration).

Multivariate empty model. In the first approach, the emphasis 
is placed on the left-hand side of the model (i.e., the yij ),  
whereas the right-hand side includes only the intercept 
( ).x zij ij= =1  For all variables included on the left-hand 
side, the MLMM decomposes their variances and covari-
ances into separate between- ((ΨΨ))  and within-group por-
tions (Σ). We refer to this approach as the multivariate empty 
model. This model can be understood as a multivariate vari-
ant of the regular empty multilevel model—also known as 
the null model or the intercept-only model—in which the 
dependent variable is also decomposed into between- and 
within-group components, but the predictor side of the 
model remains empty. The upper half of Table 3 contains an 
example with three variables, each of which may or may not 
contain missing data. As can be seen in Table 3, the three 
variables decompose into a fixed term common to all per-
sons and groups, a random intercept unique to each group, 
and an error term unique to each person. The covariance 
matrices of random effects and errors, Ψ and Σ, contain the 
variances and covariances of the yij  and allow for different 
relations between the dependent variables at the group and 
the person level, respectively. For that reason, the empty 
model is especially useful if researchers are interested in 
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estimating relationships at the individual and the group level 
as in random-intercept models with group-level predictors 
(see Example 1).

Full mixed-effects model. The second approach utilizes both 
sides of the model. For all variables included on the right-
hand side (i.e., in xij  and zij ), the MLMM estimates fixed 
and/or random effects, respectively. The lower half of Table 
3 contains an example with two dependent variables with 
missing data and one fully observed predictor variable x1  in 
xij  and zij . As can be seen, the model includes both fixed 
and random effects for the intercept and x1 . We refer to this 
model as the full mixed-effects model because it includes 
both random intercepts and slopes where possible. Note that 
x1  is not decomposed in this model, and the fixed and ran-
dom effects represent the overall effects of that variable on 
the dependent variables. To include separate within- and 
between-group effects of x1 , the variable must be decom-
posed into between- and within-group portions prior to per-
forming MI (e.g., by including the group mean as an 
additional predictor). The full mixed-effects model is partic-
ularly useful if the model of interest includes random slopes 
because the slope variance is represented in the imputation 
model (see Example 2).

Software Alternatives

A number of software packages have introduced proce-
dures for MI of multilevel data. The software Mplus 
(Muthén & Muthén, 2012) implements a two-level model 
similar to the empty model in pan (denoted H1) as well as 
a second procedure (denoted H0) for more complex 

models (e.g., random-slope models; see Asparouhov & 
Muthén, 2010b). Joint modeling approaches are also avail-
able in SAS (Mistler, 2013), REALCOM (Carpenter, 
Goldstein, & Kenward, 2011), and the R package jomo 
(Quartagno & Carpenter, 2016). A fully conditional speci-
fication of MI is available in the R package mice (van 
Buuren & Groothuis-Oudshoorn, 2011). For some of these 
packages, it is possible to follow similar analysis steps as 
outlined in this article for the pan package. We return to 
this possibility in a later section.

Example Applications With Multilevel 
Missing Data

To demonstrate the application of pan for imputing incom-
plete multilevel data, we made use of the mitml package. 
This package provides a more convenient interface for the 
pan algorithm and some additional tools for handling multi-
ply imputed data sets and combining their results (Grund, 
Robitzsch, & Lüdtke, 2016). Following the imputation, we 
used the package lme4 for estimating the two models of 
interest (Bates, Maechler, Bolker, & Walker, 2014). We 
repeated the imputation and estimation in both examples 
using the popular software Mplus.1 The results were mostly 
consistent with those of pan and will not be discussed in 
detail. Input files for Mplus are provided in Supplement A in 
the supplemental online materials.

The example data set is structured as follows. The first 
variable (ID) denotes the class membership of each student. 
The remaining variables are as described above and may 
contain different amounts of missing data, which are denoted 
as NA.

Table 3. Two Multivariate Linear Mixed-Effects Models for Missing Data.

General notation

y x z b eij ij ij ij ij= + +ββ

Multivariate empty model

y y y
ij1 2 3 1 2 3

target variables

=

fixed effects (inte

   β β β

rrcepts)

+

random effects (intercepts)

+1 2 3 1 2 3b b b e e e
j    iij

residuals

ΣΨb b b N e e e N
T
j ij1 2 3 1 2 3( , ) and ( , )   ∼ ∼0 0

Full mixed-effects model

y y xij ij
1 2 1

01 02

11 12

target variables

= 1

fixe

   










β β
β β

dd effects (intercepts,slopes)

+ 1 1
01 02

11 12
x

b b

b bij 









jj

ij
e e

random effects (intercepts, slopes)

+

residuals

1 2 

b b b b N e e N
j
T

ij01 11 02 12 1 2~ ( , ) and ~ ( , )   0 0Ψ Σ

Note. The predictor x1  is assumed to be completely observed. Vectorization of the random-effects matrix b j  is achieved by stacking its columns.
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Treating and analyzing multilevel missing data usually 
involves the following steps. First, an appropriate imputation 
model must be specified. As outlined above, the analysis 
model must be considered at that point so that the relevant 
variables, parameters, and auxiliary variables are included in 
the imputation model. Second, the imputation procedure 
must be carried out, resulting in a number of imputed data 
sets. Third, the data sets must be analyzed separately, and the 
resulting parameter estimates are combined according to the 
rules described in Rubin (1987; for alternatives, see Carpenter 
& Kenward, 2013; Reiter & Raghunathan, 2007). These 
steps can be carried out using the mitml package. To illus-
trate the impact of different approaches for handling incom-
plete multilevel data, we also provide the results obtained 
from single-level MI, which ignores the multilevel structure, 
and from LD (i.e., complete case analysis). The computer 
code and output files are provided in Supplement B in the 
supplemental online materials.

Example 1: Random-Intercept Model

In the first example, the model of interest examined the 
between- and within-group effects of DPM on MA, while 
controlling for SES at the individual and class level.

 

MA DPM DPM

SES SES DPM

SES

ij ij j

ij j j

j j i

= 0 1

2 3

4 0

β β

β β

β υ ε

+ −( ) +
−( )+ +

+ + jj .

 (1, revisited)

Choosing an appropriate imputation model is straightfor-
ward in this case because the multivariate empty model is 
suitable for random-intercept models in general. In addition, 
the empty model includes between- as well as within-group 
relations as required by the model of interest (in ΨΨ  and ΣΣ;;  
see Table 3). Recall that the empty model is specified by 
writing all variables on the left-hand side of the model equa-
tion. In R, the imputation model for this example is set up as 
follows.

The mitml package uses formula objects to represent the impu-
tation model. The “~” symbol separates the left- and right-hand 

side of the model. The left-hand side contains the three vari-
ables of interest and the auxiliary variables (i.e., reading 
achievement, CA, ratings of DPR and school climate). On the 
right-hand side, the intercept is specified both as a fixed (1) and 
a random effect (1|ID), where the “|” symbol denotes 
clustering.

For running the pan algorithm, the mitml package offers 
the function panImpute as its main interface. The pan 
algorithm uses Markov Chain Monte Carlo (MCMC) tech-
niques to draw replacements for the missing values. At 
each iteration of the procedure, a new set of parameters 
and replacements is simulated. The distribution from 
which the replacements are drawn is called the posterior 
predictive distribution of the missing data (Gelman, Carlin, 
Stern, & Rubin, 2013). The full procedure is divided into a 
burn-in phase and an imputation phase (see Enders, 2010). 
During burn-in, the algorithm performs a number of itera-
tions without saving any imputations, thus ensuring that 
the parameters of the imputation model have converged to 
stationary distributions. In other words, the burn-in phase 
must be long enough for the algorithm to “stabilize” before 
any replacements are drawn. Then, during the imputation 
phase, a number (m) of imputed data sets are drawn, each 
spread a number of iterations apart. The fact that imputa-
tions are not drawn directly from consecutive iterations 
ensures that the imputed data sets constitute independent 
random draws from the posterior predictive distribution. 
Specifically, consecutive iterations in MCMC are often 
correlated to some degree (autocorrelation), whereas mul-
tiply imputed data sets must be drawn independently of 
one another. Thus, the number of iterations chosen between 
imputations must be large enough for autocorrelation to 
vanish.

In the first example, we ran pan for 50,000 burn-in itera-
tions, after which m =100  imputed data sets were drawn, 
each spread 5,000 iterations apart. While these numbers may 
seem large, recent studies have advocated generating such 
large numbers of imputations, particularly when large por-
tions of the data are missing (Bodner, 2008; Graham, 
Olchowski, & Gilreath, 2007). The number of iterations for 
burn-in and between imputations was chosen such that con-
vergence could be ensured, as described below. The respec-
tive command using mitml was as follows.

ID MathAchiev ReadAchiev CognAbility SES MathDis ReadDis SchClimate

1 517.92 547.65 52 70 1.6 1.8 1.25
1 524.78 633.82 46 40 3.0 2.4 2.50
1 544.50 474.04 59 34 NA 2.4 1.00

# SETUP: imputation model (variance  
# decomposition model)
fml <- MathAchiev + MathDis + SES + 
ReadAchiev + CognAbility + ReadDis + 
SchClimate ~ 1 + (1|ID)

# IMPUTATION:
imp <- panImpute(dat, formula=fml, 
n.burn=50000, n.iter=5000, m=100, 
seed=1234)
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The mitml package saves the imputation in a special format 
that is designed to handle large data sets. To obtain a list 
containing all the imputed data sets, the function mitmlCom-
plete is used. The necessary command is printed below.

Convergence diagnostics. For the analysis to yield reliable 
results, it must be ensured that the pan algorithm has con-
verged and that the imputed data sets are approximately 
independent draws from the posterior predictive distribu-
tion (for a detailed discussion of convergence assessment 
in MCMC, see Cowles & Carlin, 1996; Gill, 2014; Jack-
man, 2009). The mitml package offers two ways of doing 
so. The first option is to examine the potential scale reduc-
tion factor (also called R;  Gelman & Rubin, 1992) for the 
parameters of the imputation model. Originally intended 

for analyzing multiple MCMC chains, R  is calculated 

# list of imputed data sets
impList <- mitmlComplete(imp, print=″all″)

# DIAGNOSTIC: summary and potential scale  
# reduction
summary(imp)

Call:

panImpute(data = dat, formula = fml, n.burn = 50000, n.iter = 5000,m = 100, seed = 1234)

Cluster variable:         ID
Target variables:         MathAchiev MathDis SES ReadAchiev CognAbility ReadDis SchClimate
Fixed effect predictors:  (Intercept)
Random effect predictors: (Intercept)

Performed 50000 burn-in iterations, and generated 100 imputed data sets, each 5000 
iterations apart.

Potential scale reduction (Rhat, imputation phase):

 Min 25% Mean Median 75% Max

Beta: 1.000 1.000 1.000 1.000 1.000 1.000
Psi:  1.000 1.000 1.001 1.000 1.001 1.011
Sigma: 1.000 1.000 1.000 1.000 1.000 1.001 

Largest potential scale reduction:
Beta: [1,6], Psi: [1,1], Sigma: [1,1]

Missing data per variable:

 ID MathAchiev MathDis SES ReadAchiev CognAbility ReadDis SchClimate

MD% 0 19.4  61.4 35.0  0          0           21.5 21.7

here by discarding the burn-in iterations and dividing the 
single MCMC chain for each parameter into multiple seg-
ments (see Asparouhov & Muthén, 2010a). The R  statis-
tic then compares the variance within and between 
segments to detect a potential “drifting” of the chain, that 
is, chains that are more variable overall than one would 
expect, based on the variability within segments. In the 
mitml package, R  is included in the summary of an 
imputed data object.

In addition to the potential scale reduction, the output of 
summary includes details about the imputation procedure 
and the missing data rate per variable. In this example, the 
output was as follows (truncated for better readability).

Ideally, R  should be close to one for all parameters 
(Gelman & Rubin, 1992). If larger values occur (say, above 
1.050), a longer burn-in period may be required. Due to the 
potentially large number of statistical parameters, the mitml 
package displays only summary statistics for these values 

while emphasizing the parameters with the largest R . As 
shown in the output, the R  was well below 1.050  for all 
parameters. The parameter with the largest R  was the first 
diagonal entry of the random–effects covariance matrix ΨΨ,,  
that is, the intercept variance for MA scores ( . ).R =1 011  
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However, R  has been criticized, and large values of R  
need not always indicate poor convergence (e.g., Geyer, 
1992). Therefore, as a second option, diagnostic plots 
should be considered. For each parameter in the imputation 
model, the plot function may produce a trace plot for all 
iterations during and/or after burn-in, an autocorrelation 
plot for all iterations after burn-in, and a summary of the 
parameter’s posterior distribution. The trace plot is a graph-
ical representation of the MCMC chain for each parameter, 
and it shows the values of that parameter at each iteration. 
The autocorrelation plot shows the degree to which con-
secutive elements of the MCMC chain are correlated (when 
spread a number of iterations apart). The posterior sum-
mary includes a density plot of the MCMC chain and a 
number of summary statistics relating to both the MCMC 

Figure 1. Diagnostic plots for the fixed intercept (top) and the intercept variance (bottom) of math achievement in the imputation 
model.
Note. The trace plot includes all iterations from the burn-in and the imputation phase. The autocorrelation plot and the posterior summaries are 
calculated only from the imputation phase.

plot(imp, trace="all")

chain and its autocorrelation. The diagnostic plots can be 
requested as follows.

Here, we discuss the diagnostic plots only for the fixed inter-
cept and the intercept variance for MA, which exhibited the 
worst convergence behavior of all parameters (see Figure 1). 
The trace plots showed no sign of “drifting” or substantial 
change after the burn-in phase, indicating that 50,000 itera-
tions were sufficient for the parameters to reach their respec-
tive target distributions. Autocorrelation was quite persistent 
for the intercept variance but had essentially died out by lag 
5,000. Therefore, imputations spread 5,000 iterations apart 
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could be considered independent. We concluded that the 
parameters had converged and that the imputed data sets 
constituted independent draws from the posterior predictive 
distribution of the missing data.

ICCs. Usually the first step in analyzing multilevel data is to 
estimate the ICC of the variables of interest. Therefore, 
before proceeding with the model of interest, we will illus-
trate the analysis of multiply imputed data sets by fitting 
intercept-only models for MA, SES, and DPM to estimate 
their ICCs. To obtain final parameter estimates from multi-
ply imputed data sets, the analysis model must be fit sepa-
rately to each data set, and the resulting estimates must be 
combined. In the mitml package, the list of imputed data sets 
(here impList) can be analyzed by using the functions with 
and within. The within function is used to transform the 
imputed data sets and carry out smaller computations prior 
to fitting the analysis model. The with function returns the 
model fit itself. The intercept-only model for MA can be fit 
as shown below (for DPM and SES, see Supplement B in 
the supplemental online materials). We used the lmer func-
tion from the lme4 package to fit the analysis models.

This results in a list of 100 fitted analysis models, one for 
each imputed data set. The parameter estimates of the fitted 
models can be combined by using the rules described in 
Rubin (1987). The mitml package implements Rubin’s rules 
in the testEstimates function, which returns the combined 
estimates for all fixed effects and, when used with lme4, the 
variance components and the residual ICC (see Supplement 
B in the supplemental online materials). The final estimates 
can be requested as given below.

The resulting estimates of the ICCs are presented in Table 4 
along with the estimates from single-level MI and LD. Most 

notably, multilevel MI (using pan) led to much larger esti-
mates of the ICCs than single-level MI, especially for vari-
ables with large amounts of missing data (DPM and SES). 
This illustrates the importance of accounting for the multilevel 
structure when conducting MI for multilevel data. The esti-
mates obtained from LD were closer to those of multilevel MI 
without any obvious pattern emerging. These results are con-
sistent with previous research that was based on simulation 
studies (e.g., Taljaard et al., 2008; van Buuren, 2011).

Model of interest. The procedures outlined above can also be 
used for fitting the model of interest (Equation 1). Prior to 
fitting the model, the group means for DPM and SES must be 
calculated in each imputed data set, and the student-level 
variables must be centered around their respective group 
means. Such computations can be carried out using within as 
shown below.

This results in a list of 100 imputed data sets, similar to the 
original list, but with the group means and the group-mean-
centered variables added to each data set. Finally, the model 
of interest was fit as shown below using the lme4 package 
(using with).

As before, testEstimates returned the final parameter esti-
mates and inferences.

The output of testEstimates includes the final parameter esti-
mates, the MI standard errors, the degrees of freedom and 
value of the reference t  distribution,2 the fraction of missing 
information (FMI), and the relative increase in variance due 
to nonresponse (RIV). Even though the FMI is not frequently 
reported in empirical studies, it holds great value for the 
interpretation of results and has been recommended as a 

# final parameter estimates (Rubin′s rules)
testEstimates(fit, var.comp=TRUE)

Table 4. Estimates of the Intraclass Correlation for the Variables 
of Interest in Example 1.

Multilevel MI Single-level MI Listwise deletion

ICCMA .121 .111 .115
ICCSES .122 .072 .134
ICCDPM .179 .100 .169

Note. MI = multiple imputation; ICC = intraclass correlation; MA = math 
achievement; SES = socioeconomic status; DPM = disciplinary problems in 
math classes.

# FIT: null model for math achievement
fit <- with(impList, lmer(MathAchiev ~ 1 + 
(1|ID)))

# TRANSFORM: class means for MathDis and SES
impList <- within( impList, {

MathDis.CLS <- clusterMeans(MathDis,ID)
SES.CLS <- clusterMeans(SES,ID)
})

# TRANSFORM: center student-level predictors
impList <- within( impList, {

MathDis.STU <- MathDis - MathDis.CLS
SES.STU <- SES - SES.CLS
})

# FIT: model of interest
fit <- with(impList, lmer(MathAchiev ~ 1 + 
SES.STU + SES.CLS + MathDis.STU +  
MathDis.CLS + (1|ID)))

# final parameter estimates (Rubin′s rules)
testEstimates(fit, var.comp=TRUE)
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diagnostic tool for analyzing multiply imputed data sets 
(Bodner, 2008). The FMI represents the amount of informa-
tion about an estimand that is lost due to missing data 
(Allison, 2001; Enders, 2010). In other words, the FMI 
shows the loss of “efficiency” when estimating parameters 
from multiply imputed data sets (Savalei & Rhemtulla, 
2012). Similar to the FMI, the RIV denotes the increase in 
sampling variability in an estimate that can be attributed to 
missing data (see Enders, 2010). The output for the model of 
interest is given above.
The results for multilevel MI, single-level MI, and LD are 
presented in Table 5. In general, a higher SES was associated 
with higher MA scores, whereas test scores tended to be 
lower if students reported disciplinary problems in class. The 
estimates at the class level were roughly twice as large as 
those at the student level. Single-level MI led to similar esti-
mates of within-group effects, but the estimates of the 
between-group effects were consistently larger than those 
obtained from multilevel MI. LD produced larger standard 
errors (especially at the student level) and smaller estimates 
of class-level effects.

Researchers are often interested in estimating contextual 
effects, that is, group-level effects when controlling for 
effects at the student level. For example, the contextual effect 
of SES can be calculated simply by subtracting its within-
group coefficient from its between-group coefficient (Kreft, 
de Leeuw, & Aiken, 1995). Effects constrained in such a way 
can be tested against zero using the testConstraints function 
as shown below.

Testing constrained parameters is based on the delta method 
(e.g., Casella & Berger, 2002; Raykov & Marcoulides, 
2004), and the pooled test for multiply imputed data sets is 
based on the method by Li, Raghunathan, and Rubin 
(1991).3 For further details, we refer to the package docu-
mentation. The output for testing the contextual effect of 
SES is printed below.

In this example, the contextual effect of SES was  
statistically significant at p < .001  ( F =15 297. ,  df1 1= ,  
df2 1293 0= . ). Thus, it appeared that classes with a higher 
SES tended to have higher MA scores, even after controlling 
for SES at the student level.

Notice that, throughout this example, we used manifest 
group means as predictor variables in the multilevel 

Call:

testEstimates(model = fit, var.comp = TRUE)

Final parameter estimates and inferences obtained from 100 imputed data sets.

 Estimate Std.Error t.value df p.value RIV FMI
(Intercept) 502.498 19.254 26.098 1210.447 0.000 0.401 0.287
SES.STU 1.065 0.084 12.614 526.055 0.000 0.766 0.436
SES.CLS 2.150 0.267 8.065 1429.302 0.000 0.357 0.264
MathDis.STU -20.736 2.032 -10.203 372.305 0.000 1.065 0.518
MathDis.CLS -41.131 5.035 -8.169 1358.967 0.000 0.370 0.271

 Estimate
Intercept~~Intercept|ID 655.957
Residual~~Residual 8318.936
ICC|ID 0.073

Unadjusted hypothesis test as appropriate in larger samples.

# contextual effect via model constraints
testConstraints(fit, ″SES.CLS - SES.STU″)

Call:

testConstraints(model = fit, constraints = 
"SES.CLS – SES.STU")

Hypothesis test calculated from 100 imputed 
data sets. The following constraints were 
specified:

SES.CLS - SES.STU

Combination method: D1

 F.value df1 df2 p.value RIV
 15.297 1 1292.993 0.000 0.365

Unadjusted hypothesis test as appropriate in 
Larger samples.
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analyses. This is different from the imputation model, where 
the group-level portions of variables are represented as 
latent variables (i.e., random effects). In general, an imputa-
tion model based on latent group means (i.e., random 
effects) yields similar results as one that is based on mani-
fest means, and both can be considered correct imputation 
models for multilevel data (Carpenter & Kenward, 2013; 
Lüdtke et al., in press; Mistler, 2015). However, when esti-
mating the model of interest, the predictors’ group means 
may again be considered as latent, and slightly different 
results are expected for such an analysis model (Asparouhov 
& Muthén, 2006; Lüdtke et al., 2008). A further discussion 
can be found in Supplement C in the supplemental online 
materials along with the Mplus syntax files for fitting the 
latent analysis model. In this example, the two analysis 
models led to essentially the same conclusions.

Example 2: Random-Slope Model

In the second example, the model of interest examined the 
effect of student’s CA and SES on students’ MA scores. The 
effect of SES is assumed to be fixed, whereas the effect of 
CA is allowed to vary across groups.

 

MA CA CA CA

SES SES SES

CA

ij ij j j

ij j j

j j

= 0 1 2

3 4

0 1

β β β

β β

υ υ

+ −( ) + +

−( ) + +

+ iij j ij−( ) +CA ε .

 (2, revisited)

As discussed before, the imputation model must consider 
the model of interest. In this example, the effect of CA is 
assumed to vary across groups, which must be reflected in 
the imputation model. The full mixed-effects model was 
used for this task (see Table 3). Furthermore, we calculated 
the group means and the group-mean-centered CA scores so 
that we could use them in the imputation model. This was 
achieved using within as shown below.

Because CA scores are available for all students, it can be 
included on the right-hand side of the imputation model, 
which also allows the slope variance to be specified. The 
imputation model was set up as follows.

The model includes MA, SES, and the auxiliary variables on 
the left-hand side of the equation. To include the slope vari-
ance, CA is featured on the right-hand side, where 
(1+CognAbility.STU|ID) allows the intercept and the effect of 
the group-mean-centered CA scores to vary across groups.

It is worth noting that the MLMM assumes the same ran-
dom-effects structure for all dependent variables in the model. 
In other words, the full mixed-effects model includes not only 
the intercepts and slopes for the regressions of MA and SES on 
CA but also for the four remaining variables. Thus, users of pan 
should be wary of including too many variables if the model 
contains multiple random effects. The number of parameters 
can increase rapidly by adding dependent variables or predic-
tors with random effects to the model, possibly requiring a 
large number of iterations for the model to converge.

As in the first example, the imputation procedure is started 
by using panImpute while referring to the data set and the 
model equation. In this example, we let pan perform 100,000 

Table 5. Results From Multilevel MI, Single-Level MI, and Listwise Deletion for Example 1 (Random-Intercept Model).

Multilevel MI Single-level MI Listwise deletion

 Estimate SE FMI Estimate SE FMI Estimate SE

Intercept 502.498 19.254 0.287 502.268 22.326 0.231 505.911 20.063
SESij 1.065 0.084 0.436 1.054 0.080 0.401 0.849 0.138

SES j 2.150 0.264 0.316 2.474 0.303 0.237 1.753 0.275
DPMij −20.736 2.032 0.518 −21.609 1.816 0.440 −21.874 3.054

DPM j −41.131 5.035 0.271 −47.165 5.764 0.187 −31.552 5.689
Var j( )0υ 655.957 592.132 731.860  
Var ij( )ε 8,318.936 8,387.913 8,299.000  

Note. Estimates were significant at p < .001 . MI = multiple imputation; FMI = fraction of missing information; SES = socioeconomic status;  
DPM = disciplinary problems in math classes; υ0 j  = random intercepts; εij  = residuals at Level 1.

# TRANSFORM: group mean centering (prior to  
# performing MI)
dat <- within(dat, {
CognAbility.CLS <- clusterMeans(CognAbility, 
ID)

CognAbility.STU <- CognAbility -  
CognAbility.CLS
})

# SETUP: imputation model (random effects  
# model)
fml <- MathAchiev + SES + ReadAchiev +  
MathDis + ReadDis + SchClimate ~ 1 + 
CognAbility.STU + CognAbility.CLS + 
(1+CognAbility.STU|ID)
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burn-in iterations, after which we generated m =100  
imputed data sets, each spread 20,000 iterations apart. The 
respective command was as follows.

As before, a list of imputed data sets was extracted using 
mitmlComplete. The code is not displayed here because it is 
identical to the previous example (see Supplement B in the 
supplemental online materials).

Figure 2. Diagnostic plots for the fixed effect (top) and the slope variance (bottom) for the regression of math achievement on 
cognitive ability in the full mixed-effects model.
Note. The trace plot includes all iterations from the burn-in and the imputation phase. The autocorrelation plot and the posterior summaries are 
calculated from the imputation phase.

# IMPUTATION:
imp <- panImpute(dat, formula=fml, 
n.burn=100000, n.iter=20000, m=100, 
seed=1234)

Convergence diagnostics. Before proceeding with the analysis, 
it must be ensured that the pan algorithm has converged dur-
ing burn-in and that the interval between imputations was 
sufficiently large. Again, R  gives an idea of possible prob-
lems with convergence and is accessed through the summary. 
The largest value of R  was 1.001 in this case, indicating 
that the MCMC chain had become stationary for all param-
eters. Examining the diagnostic plots not only supported this 
impression but also indicated that some parameters were 
affected by autocorrelation. As shown in Figure 2, the param-
eters related to the variables of interest converged quickly 
and did not suffer greatly from autocorrelation. For some 
parameters, especially the group-level variance components, 
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the autocorrelation was quite persistent but vanished for all 
parameters with a lag of 15,000 to 20,000 iterations.

Model of interest. To estimate the model of interest, the stu-
dent-level variables were centered around their group 
means (using within), and the model was fit using the lme4 
package (using with). We changed the method for estimat-
ing the multilevel model from restricted maximum likeli-
hood (REML) to full information maximum likelihood 
(FIML) because the model comparison that was conducted 
as a later step in this analysis required that the analysis 
models were estimated using FIML. The code for fitting the 
model of interest is given below.

The final parameter estimates and inferences were obtained 
using testEstimates. These are presented in Table 6, along 
with the estimates from single-level MI and LD. Students 
with higher CA (as compared with their class average) 
tended to score higher on the MA test after controlling for 
SES. This relation appeared to vary substantially across 
groups. In comparison, single-level MI produced lower 
estimates of the intercept and slope variance and a slightly 
larger estimate of the class-level effect of CA. For LD, the 
estimates of the fixed effects and variance components 
were slightly different from those obtained with MI but 
comparable altogether. Results obtained using the H0 
imputation in Mplus yielded results similar to those pro-
duced by pan.4

When estimating multilevel models with random slopes, 
researchers are often interested in whether or not the regres-
sion coefficients vary substantially across groups. For this pur-
pose, likelihood-ratio tests (LRTs), which compare the model 

of interest with an alternative model that constrains the slope 
variance to zero, are often conducted (see Snijders & Bosker, 
2012). A method for pooling the LRT across multiply imputed 
data sets was suggested by Meng and Rubin (1992). This pro-
cedure is accessible in mitml through the testModels function. 
The alternative model is similar to the model of interest, but 
only the intercept is allowed to vary across groups. The code 
for fitting the alternative model is given below.

The two models can be compared using testModels, where 
method="D3" calls the procedure by Meng and Rubin 
(1992). The respective command was as follows.

The output of testModels for testing the slope variance is 
printed below.

# FIT: model of interest
fit <- with (impList, lmer(MathAchiev ~ 1 + 
CognAbility.STU + CognAbility.CLS + SES.STU + 
SES.CLS + (1+CognAbility.STU|ID), REML=FALSE))

Table 6. Results From Multilevel MI, Single-Level MI, and Listwise Deletion for Example 2 (Random-Slope Model).

Multilevel MI Single-level MI Listwise deletion

 Estimate SE FMI Estimate SE FMI Estimate SE

Intercept 84.573 21.364 0.108 79.514 20.562 0.113 96.792 25.956
CA ij 6.114 0.150 0.185 6.138 0.154 0.232 6.250 0.185

CA j 7.608 0.521 0.164 7.549 0.501 0.160 7.714 0.584

SESij 0.605 0.077 0.463 0.599 0.075 0.445 0.578 0.079

SES j 1.081 0.261 0.289 1.254 0.291 0.277 0.749 0.253

Var j( )0υ 485.050 417.802 540.924  

Var j( )1υ 1.528 1.381 1.572  

Cov j j( , )0 1υ υ 0.333 1.470 5.535  

Var ij( )ε 6,452.506 6,547.366 6,287.600  

Note. Estimates for the fixed effects were significant at p < .001.  MI = multiple imputation; FMI = fraction of missing information; CA = cognitive ability; 
SES = socioeconomic status; υ0 j  = random intercepts; υ1j  = random slopes; εij  = residuals at Level 1.

# FIT: null model without random slopes
fit.null <- with (impList,

lmer(MathAchiev ~ 1 + CognAbility.STU +
CognAbility.CLS + SES.STU + SES.CLS + 
(1|ID),

REML=FALSE))

# LRT for nonzero slope variance
testModels(fit, fit.null, method="D3")

Call:

testModels(model = fit, null.model =  
fit.null, method = "D3")

Model comparison calculated from 100 imputed 
data sets.

Combination method: D3

F.value df1 df2 p.value  RIV
  5.119 2 10386.237 0.006 0.157
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The pooled LRT was statistically significant at p = .006  
( F = 5 119. , df1 2= , df2 10386 2= . ) indicating that the 
slope variance was statistically different from zero. Thus, 
it appeared that students with different CA may differ more 
or less strongly in their MA scores, depending on the class 
to which they belong. It may be interesting to examine the 
determinants of this variation, for example, teachers’ attri-
butes or aspects of the learning environment. However, for 
the purpose of this article, we will not discuss these ques-
tions in detail. Research has shown that the LRT for vari-
ance components may suffer from low statistical power 
(see LaHuis & Ferguson, 2009; Stram & Lee, 1994). 
However, there are currently very few options for perform-
ing hypothesis tests for variance components with multiply 
imputed data sets other than Meng and Rubin’s (1992) 
method.

Analyzing Imputations Generated by 
Alternative Software

As outlined above, there are a number of software alterna-
tives for generating imputations for multilevel missing data, 
some of which are similar in scope to pan, and some of 
which provide further support for categorical, ordinal, or 
group-level variables. For example, if the model of interest 
also includes categorical variables with missing data, 
researchers may prefer using the R packages jomo or mice, 
or standalone software such as Mplus. In general, the analy-
sis steps presented here can be carried out on multiply 
imputed data sets irrespective of their origin. The require-
ment for using mitml’s analysis functions is that the multiply 
imputed data sets are represented as a “list” of data sets in R. 
This can be achieved by either generating imputations using 
its wrapper functions, or by converting the imputed data into 
a list of data sets. The mitml package currently includes 
wrapper functions for pan (panImpute) and jomo (jomoIm-
pute) as well as functions to convert imputed data sets gener-
ated by mice (mids2mitml.list). For other software packages, 
however, the conversion must be performed manually (e.g., 
using long2mitml.list, or as.mitml.list). The use of these 
functions is illustrated in the documentation of the package. 
In most applications, using the wrapper functions is recom-
mended because it allows for using the tools for convergence 
diagnostics provided by mitml.

Discussion

Even though multilevel models are frequently used in psy-
chology and the social sciences, MI of multilevel missing 
data is seldom discussed in the applied literature. As a result, 
LD, single-level MI, and ad hoc methods for representing 
the clustered data structure prevail in research practice (e.g., 
the dummy-indicator approach) even though research has 
shown that these methods can result in distorted parameter 
estimates in subsequent multilevel analyses. In the present 

article, two empirical examples were used to illustrate the 
application of the two R packages pan and mitml to multi-
level data. In Example 1, we discussed the application of 
pan to random-intercept models and for estimating between- 
and within-group effects. In Example 2, we focused on MI 
for multilevel models with random slopes and on estimating 
and testing the slope variance. We believe that researchers 
can benefit greatly from incorporating pan in their statistical 
analyses. Specifically, pan allows the special features of 
multilevel data to be preserved, a practice that is essential 
for obtaining reliable estimates from multilevel analyses 
and for understanding their results. Moreover, pan allows 
researchers to use all of the available information in the data 
and to include auxiliary information without altering the 
model of interest. By contrast, many interesting features of 
multilevel models may be distorted or even lost when using 
simpler methods for handling multilevel missing data. For 
example, the results from Example 1 showed that parameter 
estimates can be distorted if the imputation model ignores 
the multilevel structure of the data.

The field of statistical software is always in motion, and 
there continues to be a number of promising developments 
regarding multilevel MI. However, some problems still pro-
vide challenges for the future. For example, using multilevel 
MI can be difficult if missing data occur on predictor vari-
ables in models with random slopes or interaction effects. 
Graham (2012) suggested that MI for models with random 
slopes should be conducted separately for each group using 
single-level MI. Schafer (2001) proposed that incomplete 
predictor variables be treated as outcome variables in the 
imputation model, thus accepting a (possibly small) bias for 
the slope variance (see also Grund, Lüdtke, & Robitzsch, 
2016). To mitigate this problem, it has been suggested to 
generate imputations for predictor variables in such a way 
that they are consistent with the model of interest (e.g., 
Goldstein, Carpenter, & Browne, 2014; Wu, 2010; see also 
Bartlett, Seaman, White, & Carpenter, 2015). These methods 
may provide an improvement over current implementations 
of multilevel MI in complex multilevel models with random 
slopes and missing values in predictor variables (Erler et al., 
in press). Unfortunately, they are currently not available in 
standard software.

Even though many algorithms exist for MI of multilevel 
data, the analysis often remains a challenge when software 
does not provide the tools for combining the results from mul-
tiply imputed data sets. Using the mitml package, we pro-
vided examples for combining simple parameter estimates, 
model comparisons, and model constraints with multiply 
imputed data sets. In addition to Rubin’s (1987) rules, the 
package implements the procedures commonly referred to as 
D1  (Li, Raghunathan, & Rubin, 1991; Reiter, 2007), D2  (Li, 
Meng, Raghunathan, & Rubin, 1991), and D3  (Meng & 
Rubin, 1992), which can be used for testing a variety of statis-
tical hypotheses that potentially involve multiple parameters 
simultaneously (e.g., model comparisons). Nonetheless, open 
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questions remain about how some statistical quantities can be 
estimated from multiply imputed data sets. For example, it is 
not yet clear how researchers can obtain measures of the 
goodness-of-fit of multilevel models, which are often used 
for model selection (e.g., the model deviance, Akaike infor-
mation criterion [AIC], or Bayesian information criterion 
[BIC]). Such procedures might be based on the methods by 
Li, Meng, et al. (1991) and Meng and Rubin (1992), or on 
variations thereof (Licht, 2010), but clear recommendations 
have not yet been made in the literature (see also Consentino 
& Claeskens, 2010; Grund, Lüdtke, & Robitzsch, in press).

The treatment of multilevel missing data offers many 
challenges, and state-of-the-art procedures are often not very 
accessible unless researchers are deeply familiar with miss-
ing data and MI. We hope that the present article will provide 
guidance for applied researchers and promote the use of 
modern missing data techniques such as MI. In general, we 
believe that pan is a powerful tool for treating multilevel 
missing data because many features of typical research ques-
tions can easily be represented in pan’s MLMM. Future 
research should devote attention to increasing the accessibil-
ity of modern methods for handling and analyzing missing 
data. Currently, the use of MI in multilevel research, while 
largely desirable, is often hindered by the lack of accessible 
software and appropriate tools for analyzing multiply 
imputed data sets in real-world research scenarios. For future 
studies, the topic of multilevel missing data yields many 
interesting research questions that have yet to be explored.
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Notes

1. For Example 1, we used H1 imputation, which is equivalent to 
the multivariate empty model. For Example 2, we used H0 impu-
tation because a model that was equivalent to the full mixed-
effects model could not be specified using H1 imputation.

2. By default, testEstimates uses the standard t  distribution pro-
posed by Rubin (1987), which provides a test statistic that is appro-
priate in larger samples. Alternatively, the degrees of freedom may 
be adjusted for smaller samples as described in the package docu-
mentation (see also Barnard & Rubin, 1999; Reiter, 2007).

3. The method by Li, Raghunathan, and Rubin (1991) requires 
that the fractions of missing information (FMIs) are approxi-
mately equal across the parameters being tested (see also 
Licht, 2010). In the present case, the linear constraint being 

tested has only one component and fulfills this requirement 
automatically.

4. These differences were negligible for most parameters, 
but Mplus produced a large estimate of the slope variance, 
Var j( ) . .υ1 2 277=  Despite the large similarities, there are 
some subtle differences between pan and the H0 imputation 
in Mplus. For example, Mplus uses “least informative” priors 
for H1 but improper priors for H0, which cannot be specified 
using pan. However, preliminary simulations could not repli-
cate any difference between pan and Mplus. A more in-depth 
exploration of these (relatively minor) differences was beyond 
the scope of this article and will be left for future research.
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