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Multiple imputation (MI) can be used to address missing data at Level 2 in

multilevel research. In this article, we compare joint modeling (JM) and the

fully conditional specification (FCS) of MI as well as different strategies for

including auxiliary variables at Level 1 using either their manifest or their

latent cluster means. We show with theoretical arguments and computer

simulations that (a) an FCS approach that uses latent cluster means is com-

parable to JM and (b) using manifest cluster means provides similar results

except in relatively extreme cases with unbalanced data. We outline a compu-

tational procedure for including latent cluster means in an FCS approach using

plausible values and provide an example using data from the Programme for

International Student Assessment 2012 study.
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Multiple imputation (MI) of missing data has received considerable attention

in the methodological and applied missing data literature (e.g., Allison, 2001;

Enders, 2010; Little & Rubin, 2002; Schafer & Graham, 2002). However, many

open questions remain when the data have a multilevel structure (e.g., when

students are clustered within schools; for recent reviews, see Enders, Mistler,

& Keller, 2016; Hox, van Buuren, & Jolani, 2016). Most studies to date have

focused on missing data that occur at Level 1 (e.g., when students do not answer

all items on a questionnaire). These studies have shown that the multilevel structure

must be taken into account during MI because ignoring the multilevel structure in the

imputation model may lead to biased estimates in subsequent analyses (Andridge,

2011; Black, Harel, & McCoach, 2011; Drechsler, 2015; Enders et al., 2016; Lüdtke,

Robitzsch, & Grund, 2017; Taljaard, Donner, & Klar, 2008; for a more general

discussion, see Carpenter & Kenward, 2013; Meng, 1994).

Much less attention has been paid to missing data at Level 2, even though the

treatment of missing data at Level 2 can be of great practical importance when
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the model of interest includes variables at both Levels 1 and 2. For example, in a

study of teacher effects on student achievement, a whole class of students would

have to be dropped from the analysis if a certain teacher’s data are missing.

Currently, the methodological literature provides little guidance about how to

carry out MI when data are missing at Level 2 (see also van Buuren, 2011). In one

of the first studies to consider this topic, Gibson and Olejnik (2003) applied

single-level MI to a subset of the data that included only variables at Level 2

but ignored the contribution of variables at Level 1. Later, Cheung (2007) applied

single-level MI to the data set as a whole (also known as “flat-file” imputation;

see also van Buuren, 2011), thus including variables at both levels but ignoring

the multilevel structure. In contrast to most of the missing data literature, these

studies concluded that “the performance of MI was ( . . . ) poorest among all of

the methods that were studied” (Cheung, 2007, p. 625; see also Gibson and

Olejnik, 2003, p. 233). This illustrates that the performance of MI depends on

the specification of the imputation model; if the model does not reflect the

characteristics of the data or the intended analysis, then using MI may even be

harmful. In recent years, however, more advanced methods that specifically take

into account the multilevel structure of the data as well as missing data at

different levels of analysis have been developed for MI (e.g., Asparouhov &

Muthén, 2010; Carpenter & Kenward, 2013; Goldstein, Carpenter, Kenward, &

Levin, 2009).

The present article pursues three different goals. First, we compare two popular

approaches for MI of missing data at Level 2, joint modeling (JM) and the fully

conditional specification (FCS) of MI, as well as two popular ad hoc procedures,

single-level MI and listwise deletion (LD; see also Enders et al., 2016). Second, we

discuss different strategies for including variables at Level 1 when specifying the

imputation model for missing data at Level 2. More precisely, we evaluate the

consequences of including the manifest or latent cluster means of variables at

Level 1 as auxiliary variables (i.e., covariates) in the imputation model at Level

2 (see also Asparouhov & Muthén, 2006; Lüdtke et al., 2008). In this context, we

present a procedure for including latent cluster means in the FCS paradigm using

the method of plausible values (Mislevy, 1991). In two simulation studies, we

investigate the performance of each of these approaches in various conditions,

including applications with small samples and unbalanced data, and the role of

Level 1 variables when treating missing data at Level 2. Finally, we provide an

empirical example using data from the Programme for International Student

Assessment (PISA; Organisation for Economic Co-operation and Development

[OECD], 2014) and conclude with a discussion of our findings.

Cluster-Level Components in Multilevel Data

In two-level data with observations (e.g., students) nested within clusters

(e.g., school classes), variables can be measured directly at Level 1 (e.g., student

Grund et al.

317



self-concept) or Level 2 (e.g., class size, teacher qualification). In addition,

variables at Level 1 can be decomposed into one part that varies only within

clusters (within-cluster component), and a second part that varies only

between clusters (cluster-level component), the latter of which can be used

to estimate cluster-level effects of Level 1 variables (e.g., Cronbach, 1976;

Preacher, Zyphur, & Zhang, 2010). In the following, we identify two ways of

including the cluster-level component of predictor variables at Level 1 in

multilevel models. In the first approach, the cluster mean of the Level 1

variable is calculated and included as a manifest predictor variable. However,

the methodological literature has pointed out that the observed cluster mean

is sometimes not a reliable measure of the unobserved, true cluster mean

(e.g., Croon & van Veldhoven, 2007; Shin & Raudenbush, 2010). Thus, in

the second approach, the cluster-level component of the Level 1 variable is

treated as a latent variable, correcting for the unreliability that comes from

estimating cluster means with only a finite number of observations (Lüdtke

et al., 2008). In the following, we provide a more formal comparison of the

two approaches.

Consider a set of variables ðxij; zjÞ, where P variables xij ¼ ðxij1; . . . ; xijPÞ are

recorded at Level 1, and Q variables zj ¼ ðzj1; . . . ; zjQÞ are recorded at Level

2. Using manifest or latent cluster means, the values xij for an observation i

in cluster j can be expressed as

xij ¼ �x�j þ ðxij � �x�jÞ ðmanifestÞ
xij ¼ uj þ eij; ðlatentÞ

ð1Þ

where �x�j denotes the manifest cluster mean, uj denotes the latent

component at Level 2, and uj and eij are independent and distributed

normally with mean zero and covariance matrices T and Σ. Consequently,

assuming latent cluster means, the joint distribution of xij and zj can be

expressed as

Varðxij; zjÞ ¼ Tþ Σ �T

� Φ

� �
; ð2Þ

where Φ is the covariance matrix of zj, and � denotes the covariance of xij with

zj. The manifest and latent cluster means express the joint structure of xij and zj

in slightly different ways, which becomes clear when noting that �x�j ¼ uj þ �e�j.
Although the covariances between variables at Levels 1 and 2 are equivalent

in complete data, Covð�x�j; zjÞ ¼ Covðuj; zjÞ, the manifest means tend to have

a larger variance across clusters, Varð�x�jÞ ¼ VarðujÞ þ Varð�e�jÞ. This is par-

ticularly important in multilevel analyses because the manifest and latent

cluster means can imply different correlation and regression coefficients

at Level 2 (Croon & van Veldhoven, 2007; Grilli & Rampichini, 2011;

Lüdtke et al., 2008).
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Substantive Analysis Models

Consider the case with only one variable at Level 1 (yij) and one variable at

Level 2 (zj), where yij ¼ uj þ eij with latent cluster means uj. In the following,

we consider two analysis models that can be used to describe the relation

between yij and zj. In the first model, yij is an outcome variable at Level 1 that

is predicted by zj,

yij ¼ b0 þ byzzj þ uj þ Eij ; ð3Þ
where byz denotes the regression coefficient of yij regressed on zj (see Snijders

& Bosker, 2012). In the second model, reusing some of the same notation, zj

is an outcome variable at Level 2 that is predicted by the latent cluster means

of yij,

zj ¼ b0 þ bzyuj þ nj ; ð4Þ
where bzy denotes the regression coefficient of zj regressed on yij (for a discus-

sion, see Croon & van Veldhoven, 2007; Lüdtke et al., 2008). Notice that the

model in Equation A4 could also be estimated on the basis of the manifest cluster

means (i.e., with �y�j instead of uj), yielding an alternative estimate of the regres-

sion coefficient of zj on yij, say ~bzy. In general, bzy and ~bzy will not be identical

unless either the clusters become large or the variance of yij at Level 1 becomes

small in comparison with the variance at Level 2 (Croon & van Veldhoven, 2007;

Lüdtke et al., 2008). Specifically, if the uj were known, the population values of

the two regression coefficients could be expressed as follows. For balanced

clusters of size n,

bzy ¼ VarðujÞ�1
Covðuj; zjÞ ¼ T�1� and ~bzy ¼ Varð�y�jÞ

�1
Covð�y�j; zjÞ ¼ Tþ 1

n
Σ

� ��1

�:

ð5Þ

The fact that the two regression coefficients differ is well-known in the multi-

level literature (e.g., Lüdtke et al., 2008; Preacher et al., 2010; Shin & Rauden-

bush, 2010). In the present article, we elaborate on the consequences of this

finding for the treatment of missing data: When dealing with missing data at

Level 2, the manifest and latent cluster means offer two different ways of incor-

porating the cluster-level components of variables at Level 1 in the imputation

model for missing data at Level 2.

Imputation Models for Missing Data at Level 2

In the following section, we present two popular approaches to multilevel MI:

joint modeling (JM) and the fully conditional specification (FCS) of MI. In order

to discuss how the two approaches take the cluster-level component of variables

at Level 1 into account when dealing with missing data at Level 2, we also

compare the main features of the computational algorithms underlying the two
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approaches (see also Enders et al., 2016). For the purpose of this article, we focus

on applications with normally distributed variables and missing data at Level 2.

However, either approach can be used to deal with missing data at both Levels 1

and 2; nonnormal and categorical variables can also be addressed and will be

considered in the Discussion section.

Joint Modeling

The general idea of MI is to draw multiple replacements for the missing values

from the conditional distribution of the missing data, given the observed data and

a statistical model (the imputation model). In JM, a single imputation model is

specified for all variables with missing data, and imputations are generated for all

variables simultaneously (Carpenter & Kenward, 2013; Goldstein et al., 2009;

see also Schafer & Yucel, 2002). To simplify1 its presentation, we consider a

variant of the JM that does not include predictor variables but instead treats all

variables as target variables in the imputation procedure. This model can be

written as

y1ij ¼ �1 þ u1j þ e1ij

y2j ¼ �2 þ u2j ;
ð6Þ

where y1ij denotes a number of target variables at Level 1, taking on values for

observation i in cluster j, with mean vector �1, random intercepts u1j at Level 2,

and residuals e1ij at Level 1. Likewise, y2j denotes target variables at Level 2,

with mean vector �2 and residuals u2j at Level 2. The random intercepts and

residuals at Level 2 combined, uj ¼ ðu1j; u2jÞ, are assumed to follow a multi-

variate normal distribution with mean zero and covariance matrix �. The resi-

duals at Level 1, e1ij, are assumed to follow a multivariate normal distribution

with mean zero and covariance matrix Σ.

To illustrate the computational procedure for sampling from the JM, we

consider the case where there are J clusters (j ¼ 1; . . . ; J ) each with nj observa-

tions (i ¼ 1; . . . ; nj), P completely observed variables at Level 1, and Q variables

at Level 2 with arbitrary patterns of missing data (see also Carpenter & Kenward,

2013; Goldstein et al., 2009). Then, for each missing data pattern, y2j can be

decomposed into an observed and an unobserved part, y2j ¼ ðyobs
2j ; y

mis
2j Þ. The

goal of MI is to draw replacements y
imp
2j for the ymis

2j on the basis of the observed

data y1ij and yobs
2j and the parameters of the imputation model θ ¼ ð�1;�2;�;ΣÞ.

The covariance matrix at Level 2 is a ðPþ QÞ � ðPþ QÞ matrix which, for

computational convenience, can be partitioned by reordering its rows and col-

umns as �1 �12

�21 �2

h i
, with subscripts referring to variables at Levels 1 and 2, or

�obs
j �obs;mis

j

�mis;obs
j �mis

j

" #
, with superscripts referring to observed and missing data for each

cluster j; similarly, �2 is decomposed as ð�obs
2j ; �mis

2j Þ for each j. From a set of
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starting values and given appropriate prior distributions, the Gibbs sampler iter-

ates along the following steps. At iteration t,

1. Draw u
ðtþ1Þ
1j *P

�
u1jjy1ij; u

ðtÞ
2j ; θ

ðtÞ
�

from a multivariate normal distribution

N
�

~u
ðtÞ
1j ;U

ðtÞ
1j

�
, conditional on u2j, with mean and covariance matrix as follows.

a) ~u
ðtÞ
1j ¼

�
IP � ΛðtÞ

1j2j

�
�
ðtÞ
1j2j
þ 1

nj
ΛðtÞ

1j2j

Pnj

i¼1

�
y1ij � �

ðtÞ
1

�
, where ΛðtÞ

1j2j
¼

�
ðtÞ
1j2 �

ðtÞ
1j2 þ 1

nj
ΣðtÞ

h i�1

is the reliability of the conditional cluster mean of

y1ij given y2j, �
ðtÞ
1j2j
¼�

ðtÞ
12½�

ðtÞ
2 �
�1

u
ðtÞ
2j is the expected value of u1j given

u2j, and �
ðtÞ
1j2 ¼�

ðtÞ
1 ��

ðtÞ
12 �

ðtÞ
2

h i�1

�
ðtÞ
21 is the conditional variance of u1j

given u2j.

b) U
ðtÞ
1j ¼ 1

nj
ΛðtÞ

1j2j
SðtÞ , where ΛðtÞ

1j2j
is as defined above.

2. Calculate the residuals u
obs;ðtþ1Þ
2j ¼ yobs

2j � �
obs;ðtÞ
2j for observed cases at Level 2 by

subtraction.

3. Impute u
imp;ðtþ1Þ
2j *P

�
umis

2j ju
ðtþ1Þ
1j ; u

obs;ðtþ1Þ
2j ; θðtÞ

�
for the ymis

2j by drawing from a

multivariate normal distribution N
�

�
misjobs;ðtÞ
2j ;�

misjobs;ðtÞ
j

�
, with mean and covar-

iance matrix as follows.

a) �
misjobs;ðtÞ
2j ¼�

obs;mis;ðtÞ
j �

obs;ðtÞ
j

h i�1

u
obs;ðtþ1Þ
j , the expected value of umis

2j given

uobs
j with u

obs;ðtþ1Þ
j ¼

�
u
ðtþ1Þ
1j ; u

obs;ðtþ1Þ
2j

�
.

b) �
misjobs;ðtÞ
j ¼�

mis;ðtÞ
j ��

obs;mis;ðtÞ
j �

obs;ðtÞ
j

h i�1

�
mis;obs;ðtÞ
j , the conditional

variance of umis
2j given uobs

j .

4. Form u
ðtþ1Þ
2j ¼

�
u

obs;ðtþ1Þ
2j ; u

imp;ðtþ1Þ
2j

�
and calculate y

ðtþ1Þ
2j ¼ �

ðtÞ
2 þ u

ðtþ1Þ
2j .

5. Draw θðtþ1Þ*P
�

θjy1ij; y
ðtþ1Þ
2j ; u

ðtþ1Þ
1j ; u

ðtþ1Þ
2j

�
, given appropriate priors, where Pð�Þ

is an inverse-Wishart distribution for � and Σ and multivariate normal for �1 and �2.

Two important steps in this procedure ensure that the relations between variables

are taken into account when performing MI. First, the random effects u1j

of variables at Level 1 are drawn conditionally on the variables at Level 2

(Step 1). Second, the missing residuals at Level 2, u2j, are drawn conditionally

on the random effects of y1ij and the observed y2j (Step 3). Here, it becomes clear

that the JM uses the latent cluster means (i.e., random effects) of y1 to predict

missing values in y2.2 Formally, the expression in Step 1a can be seen as a

shrinkage estimator for the cluster means of y1. Using this estimator, the latent

means (i.e., random effects) are “pulled” away from the observed (i.e., manifest)

means and toward the grand mean to an extent that is determined by the relia-

bility of the cluster means (see also de Leeuw & Kreft, 1995; Raudenbush &

Bryk, 2002; Skrondal & Rabe-Hesketh, 2004).

Grund et al.

321



Fully Conditional Specification

As an alternative to JM, the joint distribution of the variables with missing

data can be approximated by imputing one variable at a time using a sequence of

univariate imputation models, where each model conditions on the other vari-

ables in the data set (or a subset of them). This procedure is known as the fully

conditional specification (FCS) of MI but sometimes also referred to as “chained

equations” or sequential MI (Raghunathan, Lepkowski, van Hoewyk, & Solenber-

ger, 2001; Royston & White, 2011; van Buuren, Brand, Groothuis-Oudshoorn, &

Rubin, 2006).

Let y1ijp denote observation i in cluster j for the pth variable at Level 1

(p ¼ 1; . . . ;P), and let y2jq denote the value of cluster j for the qth variable at

Level 2 (q ¼ 1; . . . ;Q). Then, imputations for missing values in individual-level

variables may be generated from a set of conditional distributions

y1ijp*P
�

y1ijpjy1ijð�pÞ; ~y1jð�pÞ; y2j; θp

�
; ð7Þ

where the subscript ð�pÞ denotes the set of variables from which p is excluded,

~y1j denotes the cluster-level components of variables at Level 1 (e.g., manifest or

latent means), and θp denotes the parameters of the pth imputation model. Simi-

larly, for missing values at Level 2, imputations may be generated from

y2jq*P
�

y2jqj~y1j; y2jð�qÞ; θq

�
; ð8Þ

where the subscript ð�qÞ denotes the set of variables from which q is excluded

and θq denotes the parameters of the qth imputation model. For example, the

imputation model at Level 1 may be a multilevel random intercept model (e.g.,

Schafer & Yucel, 2002; Snijders & Bosker, 2012; van Buuren, 2011), and the

imputation model at Level 2 may be a regression model based on the other

variables and cluster-level components at Level 2 (e.g., Rubin, 1987; van Buu-

ren, 2012). The relations between the variables are preserved in the FCS

approach by iterating across variables and using each variable and its cluster-

level components as predictor variables in every other imputation model. In

contrast to JM, however, the FCS approach makes it possible to extract the

cluster-level components of variables at Level 1 in different ways, that is, ~y1j

may include either manifest or latent cluster means of y1j (or a mixture thereof).

Once new imputations have been drawn, the cluster-level components must be

updated accordingly.

To illustrate the computational procedure used in the FCS approach, we first

describe the general procedure for imputing missing data at Level 2. Then, we

describe how manifest and latent cluster means can be generated and incorpo-

rated into that procedure. Consider the scenario above, where there are P com-

pletely observed variables at Level 1 and Q partially observed variables at

Level 2. For the qth variable, let yobs
2jq and ymis

2jq denote the observed and missing
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values and θq ¼ fb0q;�1q;f
2
qg the parameters of the imputation model. For

variable q at iteration t,

1. Calculate ~y
ðtÞ
1j from y1ij either as manifest or as latent cluster means (see below).

2. Draw θðtþ1Þ
q *P

�
θj~yðtÞ1j ; y

ðtÞ
2j

�
given appropriate priors, where Pð�Þ is inverse-

Gamma for f2
q and multivariate normal for b0q and �1q combined.

3. Impute y
imp;ðtþ1Þ
2jq *P

�
ymis

2jq jθðtþ1Þ
q ; ~y

ðtÞ
1j ; y

ðtÞ
2jð�qÞ

�
from a univariate normal distribu-

tion N
�
bðtþ1Þ

0q þ ~x
ðtÞ
jð�qÞ�

ðtþ1Þ
1q ;f2;ðtþ1Þ

q

�
, conditional on the predictor variables

~x
ðtÞ
jð�qÞ ¼

�
~y
ðtÞ
1j ; y

ðtÞ
2jð�qÞ

�
.

In order to include the manifest means in ~y1j, an additional step is carried out

which simply calculates the manifest mean based on the current scores of y1ij. In

the literature, this strategy is more widely known as passive imputation (Royston,

2005; van Buuren, 2012). For the pth variable at Level 1,

1. Calculate ~y
ðtÞ
1jp ¼ �y1�jp ¼ 1

nj

Pnj

i¼1

y1ijp.

Alternatively, latent means may be included in ~y1j. To this end, the latent means

are drawn from their posterior distribution, given the other variables and cluster-

level components at Level 2. Here, we present a procedure for sampling the latent

means using the plausible value technique, which regards the observed responses

at Level 1 as indicators of an unobserved, latent variable at Level 2 (Mislevy,

1991; Yucel, Schenker, & Raghunathan, 2007). For the pth variable at Level 1,

let θ�p ¼ fb0p;�1p;c
2
pjð�pÞ;s

2
pg. Then,

1. Fit3 the multilevel random intercept model y1ijp ¼ b̂
ðtÞ
0p þ b�ðtÞ1p~x

ðtÞ
jð�pÞ þ uj þ Eij,

obtaining estimates for the conditional mean m̂ðtÞ
pjð�pÞj ¼ b̂

ðtÞ
0p þ b�ðtÞ1p~x

ðtÞ
jð�pÞ and the

(residual) conditional variances ĉ
2;ðtÞ
pjð�pÞ (at Level 2) and ŝ2;ðtÞ

p (at Level 1) of y1ijp,

given the predictor variables ~x
ðtÞ
jð�pÞ ¼

�
~y
ðtÞ
1jð�pÞ; y

ðtÞ
2j

�
.

2. Draw u
ðtÞ
1jp*P

�
u1jpj~yðtÞ1jð�pÞ; y

ðtÞ
2j ;bθ�ðtÞp

�
from a univariate normal distribution

N
�

~u
ðtÞ
1jp;U

ðtÞ
1jp

�
, where the mean and variance are calculated as follows.

a. ~u
ðtÞ
1jp ¼ mðtÞ

pjð�pÞj þ lðtÞ
pjð�pÞj � 1

nj

Pnj

i¼1

�
y1ijp � m̂ðtÞ

pjð�pÞj

�
, where lðtÞ

pjð�pÞj ¼
ĉ

2;ðtÞ
pjð�pÞj

ĉ
2;ðtÞ
pjð�pÞjþŝ

2;ðtÞ
p =nj

is the reliability of the conditional cluster means of y1ijp, given ~y1jð�pÞ and y2j.

b. U
ðtÞ
1jp ¼ lðtÞ

pjð�pÞj �
ŝ2;ðtÞ

p

nj
, where lðtÞ

pjð�pÞj is as defined above.

3. Set ~y
ðtÞ
1jp ¼ u

ðtÞ
1jp .

Because the latent cluster means are regarded as unobservable in the plausible

value approach, new values for the latent means must be generated at each
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iteration even if the underlying variable is completely observed. This acknowl-

edges the fact that, because only a finite number of observations are used to

estimate the cluster-level component, any single estimate of the (latent) cluster

mean is subject to uncertainty (for related approaches involving plausible values,

see Blackwell, Honaker, & King, 2017; Yang & Seltzer, 2016).

Notice that, when using latent cluster means, FCS becomes very similar to

JM. Only in Step 2a above does the expression appear to be slightly different

from the corresponding step in JM (Step 1a). However, the similarity becomes

fully visible when the expression in Step 2a is rearranged:

~u1jp ¼
�

1� lpjð�pÞj

�
� m̂pjð�pÞj þ lpjð�pÞj � 1

nj

Xnj

i¼1

y1ijp : ð9Þ

This illustrates that the FCS approach with latent cluster means employs the same

kind of shrinkage that is also used in JM. The handling of the overall mean of y1ijp

differs because the conditional mean m̂pjð�pÞj is redefined in FCS to include the

overall mean.

Using manifest versus latent cluster means. The fact that either manifest (FCS-

MAN) or latent cluster means (FCS-LAT) can be used in FCS raises the question

of which procedure is most appropriate in a given scenario. For the purposes of

this article, we assume that the distributional assumptions of the JM hold in the

population, and FCS is used to treat missing data at Level 2. For FCS to be

consistent with the JM, the conditional distributions employed in FCS must

imply the same joint distribution as the JM. Even though several authors have

argued that this is the case for balanced data (i.e., with clusters of the same size;

Carpenter & Kenward, 2013; Lüdtke et al., 2017; Mistler, 2015), it has been

suggested that the same does not hold in unbalanced data for FCS-MAN (i.e.,

with clusters of different sizes; Resche-Rigon & White, in press). More precisely,

Resche-Rigon and White demonstrated that the conditional distribution implied

by the JM does not depend solely on the manifest means but also on cluster size,

to the effect that FCS-MAN would need to account for the Level 1 heterosce-

dasticity that is due to differences in cluster size.

In the present article, we extend this line of reasoning in two different ways.

First, we show in the Appendix that when missing data at Level 2 are treated with

FCS-MAN, (a) variance estimates for variables at Level 2 remain unbiased, but

(b) estimates of covariances at Level 2 are biased toward zero in unbalanced data.

Second and in contrast to FCS-MAN, we argue that FCS-LAT provides estimates

that are consistent with the JM regardless of whether or not the data are balanced

because the “shrinkage” estimates of the latent cluster means take the differences

in cluster size into account (i.e., the differences in reliability of the cluster means;

see also Raudenbush & Bryk, 2002). The bias under FCS-MAN is difficult to

evaluate in detail because it depends on the distribution of clusters sizes in the
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sample. In the Appendix, the bias is derived under the assumption that the

number of clusters goes to infinity and that the data are missing completely at

random (MCAR) and independently of cluster size. Consider again the case with

only one variable at Level 1 (y) and one variable at Level 2 (z). Then, the bias of

the estimator of the covariance of y with z can be expressed as

%BiasðŝyzÞ ¼ a
X
k2S

k

�n
� 1

� �
pk t2

y þ
s2

y

k

 !" # X
k2S

pk t2
y þ

s2
y

k

 !" #�1

; ð10Þ

where a denotes the probability of missing data, S denotes the set of cluster sizes

(k) uniquely present in the data, pk the proportion of clusters with size k, �n the

average cluster size, and s2
y and t2

y are the variance components of y at Levels 1

and 2, respectively. The fraction in this expression relates the variability of the

cluster means for each k 2 S to the variability of the cluster means overall.

Because smaller clusters, which tend to have larger variability in the observed

cluster means, receive negative weights k
�n� 1
� �

as opposed to larger clusters with

less variability, the bias in ŝyz tends to be negative (i.e., toward zero). In balanced

data (k ¼ �n for all k 2 S), the bias is zero. However, even with unbalanced data,

the bias appears to be relatively small. This is illustrated in Figure 1 for the

special case of uniformly distributed cluster sizes (nj), different levels of the

average cluster size (�n), different choices for the range of the cluster sizes,

FIGURE 1. Expected bias for the covariance of y with z under FCS-MAN, for varying

amounts of missing data, different intraclass correlations of y (rIy), different average

cluster sizes (�n), and different ranges of cluster sizes (nj, assuming a uniform distribution).

FCS-MAN ¼ two-level FCS with manifest cluster means; FCS ¼ fully conditional

specification.
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different amounts of missing data, and different values for the intraclass correla-

tion (ICC) of y (rIy). Relatively extreme conditions appear to be necessary in

order for the parameter estimates to be distorted to a degree that is no longer

tolerable (e.g., <�10%). Note also that, although the nonequivalence of FCS-

LAT and FCS-MAN in unbalanced data holds in general, the expression for the

bias was derived under relatively strong assumptions and should not be general-

ized to more general conditions.

Even though the use of FCS-LAT and JM may be preferred from a

theoretical point of view, it is important to acknowledge that the statistical

models underlying these procedures may be more difficult to estimate than

those underlying FCS-MAN, especially in smaller samples or when variables

at Level 1 have little variance at Level 2 (e.g., Croon & van Veldhoven, 2007;

Lüdtke et al., 2008). Similarly, the different procedures may be more or less

accurate depending on the missing data mechanism, the proportion of missing

values, and the information available from auxiliary variables at Level 1 (e.g.,

Andridge & Thompson, 2015). Thus, it is important to study the properties of

the different procedures in less than ideal conditions (e.g., very few clusters,

small vs. large ICCs, more or less informative data loss, different types of

unbalanced data). Finally, either procedure may provide substantial gains in

accuracy and efficiency when compared with still popular but simpler methods

such as single-level MI or LD. To this end, we conducted two computer simula-

tion studies. In Study 1, we evaluated the performance of the different methods

under a variety of conditions with balanced data. In Study 2, we focused on the

more general case with unbalanced data and the potential bias associated with

using manifest cluster means (i.e., with FCS-MAN).

Study 1

In the following section, we present the results of the first simulation study in

which we compared the performance of JM and FCS for missing data at Level 2

with balanced data.

Simulation Procedure

Data generation. For the purpose of this study, we focused on the special case

where there is only one variable at Level 1 (y) and one variable at Level 2 (z). The

data were generated using the model in Equation A6. For the two variables y and

z, the model reads

yij ¼ my þ uyj þ eij;

zj ¼ mz þ uzj :
ð11Þ

For simplicity, we assumed that all variables were standardized with mean zero

(my ¼ mz ¼ 0) and unit variance. To specify the variances and covariances at

Levels 1 and 2, we defined the ICC of y (rIy) and the correlation between the two

Multiple Imputation of Missing Data at Level 2

326



variables at Level 2 (ryz). Missing values were induced in z depending on the

observed cluster means �y�j using the following generalized linear model

rj ¼ a0 þ l�y�j þ dj ; ð12Þ

where rj denotes the latent propensity for observing zj,a0 is a quantile of the standard

normal distribution according to some missing data probability a (e.g., a0 ¼
�0:842 for a ¼ 20% missing data), and l is the effect of y on the response pro-

pensity of z. The variance of rj was fixed at 1, and the residuals dj were drawn from a

normal distribution with variance 1� l2 Varð�y�jÞ. A value zj was deleted if rj > 0.

Table 1 summarizes the simulation conditions. In Study 1, we simulated

conditions with different cluster sizes (n ¼ 5, 20) that are typical in educational

research (e.g., students in school classes, repeated measurements). We varied the

number of clusters between J ¼ 30 and 1,000 to examine both the small- and

large-sample properties of the procedures. We varied the ICC of y in two steps

(rIy ¼ :10; :30) to reflect conditions with more or less information, respectively,

in y located at Level 2 (see also Lüdtke et al., 2008). We simulated conditions in

which data were missing completely at random (MCAR, l ¼ 0) or moderately or

strongly missing at random (MAR, l ¼ 0:5 or 1), and either 20% or 40% of the

data were missing.4 Each condition was replicated 1,000 times.

Imputation. To impute missing values with JM, we used the R package jomo
(Quartagno & Carpenter, 2016). To implement the FCS approach, we used the R

packages mice (van Buuren & Groothuis-Oudshoorn, 2011) and miceadds
(Robitzsch, Grund, & Henke, 2017) for imputation with FCS-MAN and FCS-

LAT, respectively. In addition, we included single-level MI with FCS (FCS-SL)

and LD for the purpose of comparison. Single-level FCS was implemented as

“flat-file” imputation thus treating all variables as variables at Level 1 (see also

TABLE 1.

Simulated Conditions in Study 1 and Study 2

Design Conditions Study 1 Study 2

Cluster size (n or �n) 5, 20 5, 20

Number of clusters (J ) 30, 50, 100, 200, 500, 1,000 50, 200, 1,000

Range in cluster size — uniform (+40%, 80%),

bimodal (+40%, 80%)

Intraclass correlation of y (rIy) .10, .30 .10, .30

Correlation of y and z (ryz) .5 .5

Effect of y on missingness (l)a 0, 0.5, 1 0.5

Portion of missing data (a) 20%, 40% 20%, 40%

aThe values for l are given in a standardized metric. A value of 1 constitutes a strong, deterministic

missing data mechanism, in which all values that lie beyond a certain cutoff are deleted.
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van Buuren, 2011); because this resulted in different imputations within clusters

for variables at Level 2, imputations were averaged within clusters prior to being

analyzed. With each procedure, we generated 10 imputed data sets. For JM, we

chose 1,000 burn-in iterations and 500 iterations between imputations. For the

FCS approach, we chose 20 iterations per imputation. These values were found to

be sufficient to ensure convergence as determined by assessing diagnostic plots.

Default flat prior distributions were used for all procedures.

Analysis and parameters of interest. The software Mplus Version 7.3 was used to

analyze the data (L. K. Muthén & Muthén, 2012). Using Mplus, we estimated the

mean (mz) and the variance (s2
z ) of z as well as the (latent) covariance between y

and z (syz). Furthermore, we estimated the regression coefficients relating y and z

at Level 2 using two additional regression models with y regressed on z (byz) and

z regressed on y (bzy). For each parameter and each simulation condition, we

calculated the bias, the root mean squared error (RMSE), and the coverage rate of

the 95% confidence interval. To calculate the bias and RMSE, we used the

average estimates from the complete data sets as a point of reference instead

of the “true” values in the data-generating model. This was necessary because,

even without missing data, the estimates of some parameters were biased in some

conditions, rendering a comparison with the “true” values less useful. The com-

plete set of results, including the raw bias and RMSE for all missing data pro-

cedures as well as those for the complete data sets, is provided in Supplement D

of the Online Supplemental Material.

Results

We first focus on the estimates of the mean and variance of z (m̂z and ŝ2
z ) and

the covariance of y with z (ŝyz). The bias for the mean, variance, and covariance

is presented in Figure 2 for conditions with different cluster sizes (n) and num-

bers of clusters (J ), different amounts of information at Level 2 as reflected by

the ICC of y (rIy), and 20% missing data under moderate MAR (l ¼ 0:5). All

procedures for multilevel MI provided approximately unbiased estimates of the

three parameters in larger samples (J ! 1,000). The procedures differed only in

the sample size needed to achieve these results. Whereas FCS-MAN and FCS-

LAT provided approximately unbiased estimates of the population parameters

even in small samples (n ¼ 5, J ¼ 30) and with little information at Level 2

(rIy ¼ :10), JM required slightly larger samples to provide unbiased estimates of

these parameters (J � 100). By contrast, FCS-SL and LD provided strongly

biased results of the mean and covariance regardless of sample size, and

FCS-SL also led to biased estimates of the variance of z.

The results obtained from the different procedures were also affected by the

missing data mechanism (l), the amount of missing data, and the ICC of y (rIy),
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as illustrated in Figure 3 for the RMSE of the covariance of y with z (ŝyz). These

factors can be regarded as determinants of the fraction of missing information

(FMI), that is, the loss of precision associated with parameter estimation with

missing data (e.g., Andridge & Thompson, 2015). Larger portions of missing

data and more informative missing data mechanisms (l) both increased the

RMSE, whereas an increase in the ICC of y reduced it. In comparison with

LD, the different MI procedures tended to benefit more from a larger ICC of

y, especially under more severe losses of data (i.e., 40% missing data, MAR).

The results for the regression models with y regressed on z ðb̂yzÞ and z

regressed on y ðb̂zyÞ are summarized in Table 2. Overall, the results were con-

sistent with the results presented above; that is, we obtained approximately

unbiased estimates of byz and bzy in larger samples, but the estimates had slight

downward biases in smaller samples. By contrast, estimates obtained from

FCS-SL and LD were biased, especially under MAR and regardless of sample

size (see also Supplement D in the Online Supplemental Material). It is interest-

ing that, even though the bias observed in smaller samples was largest for JM, the

estimates under JM were also the most accurate overall in these conditions as

reflected by the RMSE, indicating that the variability of the estimates was lower

under JM as compared with FCS-MAN and FCS-LAT. The coverage of the 95%
confidence interval was close to the nominal 95% in most conditions but was

sometimes too low under FCS in very small samples (n ¼ 5 and J ¼ 30, with

rIy ¼ :10) or in conditions with larger portions of missing data (see Supplement

FIGURE 3. Relative root mean squared error (RMSE) for the covariance of y with z (ŝyz)

with n ¼ 5 and J ¼ 200, for varying intraclass correlations of y (rIy), different missing

data mechanisms (l), and different portions of missing data (MD). LD¼ listwise deletion;

FCS-SL ¼ single-level FCS; FCS-MAN ¼ two-level FCS with manifest cluster means;

FCS-LAT ¼ two-level FCS with latent cluster means; JM ¼ joint modeling; FCS ¼ fully

conditional specification.
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D in the Online Supplemental Material). However, as might be expected from

this collection of results, the near-optimal coverage under JM (and to a lesser

extent under FCS) occurred at the expense of standard errors that were some-

times too large as compared with the variance of the parameter estimates in

smaller samples (n ¼ 5, J 	 100).

Summary. Taken together, these results indicate that (a) the overall performance

of FCS-MAN, FCS-LAT, and JM is similar in terms of bias, RMSE, and cover-

age of the 95% confidence interval; (b) the performance of the procedures may

differ in smaller samples or when larger portions of the data are missing; and (c)

including variables with substantial variance between clusters (i.e., large ICC)

can be extremely beneficial for MI because these variables can provide crucial

information about missing values at Level 2. To further illustrate the importance

of including variables at Level 1 for imputing variables at Level 2, we conducted

an additional simulation study in which we varied the ICC of y in a range from

.05 to .95 and the correlation of y and z between .20 and .80; we then estimated

the FMI under JM in each condition (otherwise n ¼ 5, J ¼ 200, l ¼ 0:5, 20%
missing data). The results are shown in Figure 4. As can be seen, the FMI tended

to decrease as the ICC of y (rIy) increased depending on the correlation between y

and z (ryz). For example, increasing the ICC of y from .10 to .30 reduced the FMI

by approximately 7.6% when the correlation was moderate (ryz ¼ :5) and by

27.4% when the correlation was strong (ryz ¼ :8). With weak correlation

(ryz ¼ :2), increasing the ICC of y did not noticeably change the FMI, as may

be expected from the fact that such weakly correlated variables are not able to

explain much variance associated with missing values. This illustrates that

researchers who want to treat missing data at Level 2 by means of MI should

include auxiliary variables at Level 1, especially when the auxiliary variables (a)

FIGURE 4. Fraction of missing information (FMI) for estimates of the covariance of y

with z (ŝyz) with n ¼ 5 and J ¼ 200, and 20% missing data (missing at random,

l ¼ 0:5), for varying intraclass correlations of y (rIy), and different correlations

between y and z (ryz).
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are strongly related to the variables with missing data and (b) contain substantial

variance between clusters as indicated by their ICCs.

Study 2

In Study 1, we evaluated the performance of JM and FCS in balanced data. In

practice, however, most research conducted with multilevel data is based on

unbalanced data. For this reason, in Study 2, we focused on the more general

case with unbalanced data (i.e., clusters of different sizes).

Simulation Procedure

Following the same general procedures as in Study 1, we generated clusters of

varying size nj in Study 2, where nj was drawn either from a uniform distribution

in the range of +40% or +80% around the average cluster size �n (e.g., for �n ¼ 5

and range +80%, nj ¼ 1; 2; . . . ; 9) or from a bimodal distribution that included

only the extreme points of this range (e.g., for �n ¼ 5 and range +80%, nj ¼ 1 or

9; see Table 1). Even though the resulting range of nj is quite typical in educa-

tional research, the two distributions should be regarded as extreme choices,

given that the distribution of cluster sizes in practice is often bell-shaped and

possibly asymmetrical. For this reason, the results presented here should be

regarded as a lower bound for the performance of the different MI procedures

in practice.

Imputation. We used the same procedures as in Study 1. In addition, on the basis

of Resche-Rigon and White’s (in press) suggestions, we included an MI proce-

dure that used manifest cluster means similar to FCS-MAN but also acknowl-

edged heteroscedasticity at Level 1 by including nj and the interaction of nj with

�y�j as additional predictor variables in the imputation model (FCS-NJ).

Results

To avoid redundancy, we focus on reporting the results for the covariance of y

with z (ŝyz; for the remaining results, see Supplement D in the Online Supple-

mental Material). These results are summarized in Table 3 for conditions with a

low ICC of y (rIy ¼ :10) and 20% missing data. Consistent with our expectations,

FCS-MAN provided slightly biased estimates of the covariance, even in condi-

tions with very large samples (J ! 1;000). However, the bias usually remained

relatively small and was restricted to conditions with few observations per cluster

(�n ¼ 5) and strongly unbalanced data (+80%). Biases larger than �10% were

obtained under FCS-MAN only in conditions with 40% missing data and strongly

unbalanced data (+80%, uniform or bimodal). In line with our expectations, the

bias was approximately twice as large in conditions with 40% missing data than

in the conditions displayed in Table 3 (see Supplement D in the Online

Multiple Imputation of Missing Data at Level 2
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(ŝ

y
z
)

in
U

n
b
a
la

n
ce

d
D

a
ta

fo
r

a

S
m

a
ll

In
tr

a
cl

a
ss

C
o
rr

el
a
ti

o
n

o
f

y
(r

Iy
¼
:1

0
)

a
n
d

2
0
%

M
is

si
n
g

D
a
ta

(M
is

si
n
g

a
t

R
a
n
d
o
m

,
l
¼

0
:5

)

B
ia

s
(%

)
R

el
at

iv
e

R
M

S
E

C
o
v
er

ag
e

(%
)

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

M
o
d
er

at
el

y
u
n
b
al

an
ce

d
(u

n
if

o
rm

,
+

4
0
%

)

� n
¼

5

J
¼

5
0

0
.4

0
.9

5
.1

�
8
.4

0
.5

9
1

0
.6

0
1

0
.6

1
1

0
.5

4
7

9
4
.5

9
5
.3

9
4
.0

9
4
.5

J
¼

2
0
0

0
.1

0
.3

2
.1

�
3
.8

0
.2

8
5

0
.2

8
4

0
.2

8
9

0
.2

7
3

9
6
.1

9
6
.5

9
5
.5

9
6
.7

J
¼

1
;0

0
0

�
0
.9

�
0
.4

�
0
.1

�
1
.5

0
.1

3
2

0
.1

3
2

0
.1

3
1

0
.1

3
0

9
3
.8

9
4
.3

9
4
.5

9
4
.1

� n
¼

2
0

J
¼

5
0

�
0

.0
1
.0

1
.0

�
8
.0

0
.4

4
6

0
.4

6
6

0
.4

5
2

0
.4

2
1

9
2
.6

9
3
.9

9
2
.4

9
1
.4

J
¼

2
0
0

�
0
.5

�
0
.5

�
0
.3

�
3
.4

0
.2

1
5

0
.2

1
4

0
.2

1
3

0
.2

1
1

9
4
.1

9
4
.4

9
4
.1

9
3
.9

J
¼

1
;0

0
0

�
0
.1

�
0

.1
0
.0

�
0
.6

0
.0

9
4

0
.0

9
5

0
.0

9
3

0
.0

9
4

9
4
.7

9
4
.2

9
4
.8

9
5
.0

S
tr

o
n
g
ly

u
n
b
al

an
ce

d
(u

n
if

o
rm

,
+

8
0
%

)

� n
¼

5

J
¼

5
0

�
0

.8
2
.5

4
.5

�
7
.5

0
.6

0
8

0
.6

3
9

0
.6

2
1

0
.5

6
6

9
4
.3

9
6
.1

9
3
.9

9
4
.2

J
¼

2
0
0

�
2

.3
0
.4

1
.7

�
3
.6

0
.3

0
0

0
.3

0
2

0
.3

0
7

0
.2

9
1

9
4
.1

9
4
.1

9
3
.8

9
3
.6

J
¼

1
;0

0
0

�
3
.2

�
0

.3
0
.2

�
1
.2

0
.1

3
6

0
.1

3
2

0
.1

3
3

0
.1

3
1

9
4
.2

9
4
.7

9
4
.1

9
4
.3

� n
¼

2
0

J
¼

5
0

1
.1

1
.5

2
.2

�
7
.5

0
.4

3
7

0
.4

4
9

0
.4

3
5

0
.4

0
1

9
4
.1

9
5
.0

9
3
.7

9
3
.6

J
¼

2
0
0

�
0

.4
0
.2

0
.5

�
2
.5

0
.2

1
9

0
.2

1
6

0
.2

1
8

0
.2

1
3

9
4
.3

9
4
.7

9
4
.7

9
4
.5

J
¼

1
;0

0
0

�
0
.9

�
0
.3

�
0
.1

�
0
.8

0
.0

9
9

0
.0

9
8

0
.0

9
8

0
.0

9
7

9
4
.4

9
4
.2

9
3
.8

9
4
.1

(c
o
n
ti

n
u
ed

)

335



T
A

B
L

E
3
.

(c
o
n
ti

n
u
ed

)

B
ia

s
(%

)
R

el
at

iv
e

R
M

S
E

C
o
v
er

ag
e

(%
)

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

F
C

S
-M

A
N

F
C

S
-N

J
F

C
S

-L
A

T
JM

M
o
d
er

at
el

y
u
n
b
al

an
ce

d
(b

im
o
d
al

,
+

4
0
%

)

� n
¼

5

J
¼

5
0

�
0

.4
1
.4

3
.8

�
8
.5

0
.6

2
9

0
.6

4
4

0
.6

4
8

0
.5

7
0

9
2
.9

9
3
.1

9
2
.4

9
2
.5

J
¼

2
0
0

�
0

.8
0
.2

1
.6

�
3
.8

0
.2

9
0

0
.2

8
9

0
.2

9
4

0
.2

7
8

9
3
.8

9
5
.0

9
4
.0

9
4
.3

J
¼

1
;0

0
0

�
1

.1
0
.0

0
.3

�
1
.1

0
.1

3
2

0
.1

3
2

0
.1

3
2

0
.1

3
0

9
4
.4

9
4
.2

9
4
.6

9
4
.3

� n
¼

2
0

J
¼

5
0

0
.5

0
.5

1
.3

�
8
.5

0
.4

2
7

0
.4

3
5

0
.4

3
9

0
.4

0
3

9
3
.5

9
4
.0

9
2
.9

9
2
.4

J
¼

2
0
0

�
0
.8

�
0
.7

�
0
.6

�
3
.5

0
.2

0
9

0
.2

0
7

0
.2

0
8

0
.2

0
5

9
5
.1

9
5
.5

9
5
.5

9
5
.2

J
¼

1
;0

0
0

�
0

.1
0
.1

0
.2

�
0
:4

0
.0

9
6

0
.0

9
6

0
.0

9
6

0
.0

9
5

9
4
.3

9
4
.6

9
4
.5

9
4
.6

S
tr

o
n
g
ly

u
n
b
al

an
ce

d
(b

im
o
d
al

,
+

8
0
%

)

� n
¼

5

J
¼

5
0

�
3

.6
1
.8

2
.9

�
7
.2

0
.6

2
7

0
.6

5
3

0
.6

5
2

0
.6

0
0

9
3
.7

9
4
.2

9
2
.6

9
2
.7

J
¼

2
0
0

�
6

.0
0
.1

1
.5

�
3
.2

0
.2

9
8

0
.2

9
6

0
.2

9
8

0
.2

9
0

9
3
.8

9
5
.3

9
5
.3

9
5
.0

J
¼

1
;0

0
0

�
7
.1

�
0

.7
0
.0

�
1
.0

0
.1

4
9

0
.1

3
5

0
.1

3
7

0
.1

3
5

9
1
.0

9
4
.0

9
4
.0

9
4
.5

� n
¼

2
0

J
¼

5
0

�
1

.6
0
.7

2
.0

�
7
.7

0
.4

7
1

0
.4

7
3

0
.4

7
9

0
.4

4
4

9
3
.1

9
4
.2

9
3
.3

9
2
.6

J
¼

2
0
0

�
2
.7

�
0

.4
0
.1

�
2
.8

0
.2

3
1

0
.2

2
7

0
.2

2
8

0
.2

2
3

9
4
.4

9
5
.3

9
4
.3

9
4
.1

J
¼

1
;0

0
0

�
2
.8

�
0

.4
0
.3

�
0
.6

0
.1

1
0

0
.1

0
4

0
.1

0
5

0
.1

0
5

9
2
.9

9
4
.0

9
3
.6

9
3
.7

N
o
te

.
� n
¼

av
er

ag
e

cl
u
st

er
si

ze
;
J
¼

n
u
m

b
er

o
f

cl
u
st

er
s;

F
C

S
-M

A
N
¼

tw
o
-l

ev
el

F
C

S
w

it
h

m
an

if
es

t
cl

u
st

er
m

ea
n
s;

F
C

S
-N

J
¼

tw
o
-l

ev
el

F
C

S
w

it
h

m
an

if
es

t
cl

u
st

er

m
ea

n
s

an
d

cl
u
st

er
si

ze
(n

j)
;

F
C

S
-L

A
T
¼

tw
o
-l

ev
el

F
C

S
w

it
h

la
te

n
t

cl
u
st

er
m

ea
n
s;

JM
¼

jo
in

t
m

o
d
el

in
g
;

R
M

S
E
¼

ro
o
t

m
ea

n
sq

u
ar

ed
er

ro
r;

F
C

S
¼

fu
ll

y

co
n
d
it

io
n
al

sp
ec

if
ic

at
io

n
.

336



Supplemental Material). In line with the recommendations in the literature, the

bias under FCS-MAN was reduced to essentially zero when the cluster size was

included in the imputation model (FCS-NJ). Similarly, under FCS-LAT or JM,

the bias was approximately zero in larger samples even with strongly unbalanced

data (J ! 1;000). In smaller samples, estimates of the covariance were slightly

biased upward under FCS-LAT (J ¼ 50) and downward under JM (J 	 200). In

terms of the RMSE, estimates obtained from JM were slightly more accurate in

smaller samples (J ¼ 50). In larger samples, differences in the RMSE tended to

be very small. Similarly, the coverage of the 95% confidence interval was very

close to the nominal 95% for all procedures in all but very extreme conditions

(e.g., for FCS-MAN; see Supplement D in the Online Supplemental Material).

Under JM (and to a lesser extent under FCS), we again observed standard errors

that were sometimes too large as compared with the variance of the parameter

estimates in smaller samples (�n ¼ 5, J ¼ 50). Taken together, these results indi-

cate that (a) covariance estimates obtained under FCS-MAN can be biased in

unbalanced data; (b) this bias is likely to be very small in any practical applica-

tion of multilevel MI; (c) FCS-NJ, FCS-LAT, and JM all provide approximately

unbiased results when samples are sufficiently large; and (d) the performance of

the procedures may differ in smaller samples in terms of bias and overall accu-

racy (RMSE).

Empirical Example

To illustrate the treatment of missing data at both Levels 1 and 2 using MI, we

applied the procedures used in Study 1 to the German subsample of the PISA

2012 study (OECD, 2014). We were interested in the effects of the availability of

computers at school on students’ mathematics achievement when controlling for

general aspects of students’ learning environment. We controlled for students’

gender; their economic, social, and cultural status (ESCS); and ratings on class-

room management and student–teacher relations. To control for confounding

effects of school size, we also included the number of students who were 15

years of age as an additional covariate. For the purpose of illustration, we used

only the first plausible value for students’ mathematics achievement and ignored

issues related to unequal probabilities of being selected into the sample that may

have been due to the sampling design.5

The data set included a total of 5,001 students nested within 230 schools with

3 to 25 students participating per school (with 90% of the schools having between

11 and 25 participants; �n ¼ 21:7). The number of computers at school (Level 2)

was missing for 17.4% of the schools and the number of students at age 15 for

14.8%. At the student level (Level 1), observations were missing for ESCS

(17.2%), classroom management (45.1%), and student–teacher relations

(44.6%; see OECD, 2014). We generated 20 imputations for the missing data

using (a) JM as implemented in the R package jomo, (b) the FCS approach

Grund et al.
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implemented in the R package mice with manifest cluster means for all student-

level variables using passive imputation (FCS-MAN), (c) the FCS approach

similar to approach (b) but with latent cluster means for students’ math achieve-

ment and their ratings on classroom management and student–teacher relations

using the plausible value approach implemented in miceadds (FCS-LAT), and

(d) single-level FCS using mice (“flat-file,” FCS-SL). We used Mplus to fit the

multilevel analysis model in which students’ mathematics achievement was

regressed on students’ gender, ESCS, and ratings on classroom management and

student–teacher relations as well as the number of students and computers at

school. The analysis model included latent cluster means for the ratings on

classroom management and student–teacher relations as well as manifest cluster

means for ESCS, centering the individual scores around the cluster-level com-

ponents. The computer code and the Mplus syntax file are provided in Supple-

ment A of the Online Supplemental Material.

The results are presented in Table 4. The estimates obtained from FCS-MAN,

FCS-LAT, and JM, as well as their standard errors, were very similar to each

other. For example, the effect of the number of computers at school when con-

founding variables at Level 2 were controlled for was 0.197 for JM (SE ¼ 0.090,

p ¼ .028), 0.198 for FCS-MAN (SE ¼ 0.091, p ¼ .029), and 0.213 for FCS-LAT

(SE ¼ 0.097, p ¼ .027). Estimates of the remaining parameters were also close,

and the same pattern of results was observed for these procedures. By contrast,

the results obtained from FCS-SL oftentimes did not agree with the results from

the other procedures, and the standard errors tended to be smaller at Level 1 and

larger at Level 2. Overall, these results illustrate that FCS-MAN, FCS-LAT, and

JM may provide similar results in many applications, especially when compared

with simpler methods such as single-level MI (FCS-SL).

Discussion

The goals of the present article were (a) to compare the computational pro-

cedures underlying JM and FCS for MI of missing data at Level 2, (b) to examine

the different options (manifest vs. latent cluster means) for including the cluster-

level components of variables at Level 1 in the imputation model for variables at

Level 2, and (c) to provide recommendations for research practice by conducting

an evaluation of the different procedures in a computer simulation study. We

showed that JM and FCS are conceptually similar when both use latent cluster

means, and we outlined a computational procedure for including latent cluster

means in the FCS approach using plausible values (FCS-LAT). Using theoretical

arguments, and building on the previous literature, we showed that using man-

ifest means (FCS-MAN) is equivalent to using latent means in balanced data but

produces slightly biased estimates of covariances at Level 2 in unbalanced data.

In line with previous research, we found that (a) controlling for cluster size (FCS-

NJ) or (b) using latent cluster means during MI (FCS-LAT and JM) provides

Multiple Imputation of Missing Data at Level 2
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unbiased results regardless of whether or not the cluster sizes are balanced.

However, it was also evident that the bias obtained under FCS-MAN was rela-

tively small and limited to conditions with few observations per cluster (n ¼ 5),

low ICCs of variables at Level 1 (rIy ¼ :10), and extremely unbalanced data. On

the basis of our findings, we believe that all three procedures provide effective

tools for dealing with missing data at Level 2 in most applications in practice.

Especially when compared with procedures that delete cases with missing data

(LD) or ignore the multilevel structure of the data (FCS-SL), all procedures for

multilevel MI provide tremendous improvements in the accuracy of parameter

estimates and inferences.

Even though both JM and FCS can be used to treat missing data at Level 2, the

use of FCS has often been discouraged because software solutions that iterate back

and forth between variables at Levels 1 and 2 while still acknowledging the cluster-

level components of variables at Level 1 have not been available (e.g., Enders

et al., 2016). However, the FCS procedures discussed in this article all fulfill these

requirements. Moreover, using FCS may even have advantages for applications in

practice (for a comparison, see Carpenter & Kenward, 2013). Specifically, FCS-

MAN allows for flexible selection of auxiliary variables and is computationally

very efficient even for large data sets. At least in the context of educational

research, which often features cross-sectional data with moderate ICCs and rela-

tively large clusters, it may be argued that FCS-MAN provides a good compromise

between accuracy and computational speed. In addition, it is straightforward to

extend FCS-MAN to address categorical variables as well as three-level or cross-

classified data structures without greatly increasing computational demands.

On the other hand, FCS-LAT can be especially useful for applications that

make specific use of the latent cluster means (e.g., Croon & van Veldhoven,

2007) because their plausible values are directly added to the imputed data sets

and can be treated, stored, and made available in a similar way as imputations for

missing data (Yang & Seltzer, 2016). In addition, the use of FCS-LAT may be

advised when working with constructs that exhibit low ICCs or with samples that

include a small but variable number of observations per cluster. In the present

article, FCS-LAT was implemented in an “empirical Bayes” approach on the

basis of a posteriori Bayesian estimates (e.g., Laird & Ware, 1982). However, it

may be argued that the properties of FCS-LAT can further be improved by

adopting a fully Bayesian approach that includes an additional posterior draw

in the model that is used to generate plausible values for latent cluster means.

Additional simulations conducted over the course of this study indicated that the

efficiency and coverage properties in smaller samples improve noticeably under

such an approach at the cost of only a slight increase in bias (see Supplement B in

the Online Supplemental Material). The software implementation of FCS-LAT

in the R package miceadds allows either of the two methods to be used

(Robitzsch et al., 2017).
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It is interesting that the results obtained from JM were relatively sensitive to

small-sample bias. We believe that this may be due to the standard least-

informative priors employed in JM. Depending on the number of variables in

the model, these priors can imply variance components at Level 2 that are much

larger than those that might be expected from the data (Grund, Lüdtke, &

Robitzsch, 2016; McNeish, 2016). Consequently, it may be possible to improve

parameter estimates by adjusting the prior to cover a more plausible range of

values (see also Schafer & Yucel, 2002). In an additional simulation study

reported in Supplement C of the Online Supplemental Material, we evaluated

the effects of using data-dependent priors, where the priors for � and Σ were

based on empirical estimates obtained from the complete data. Using these priors

strongly reduced the small-sample bias under JM, providing results similar to

those of FCS, even in relatively small samples (i.e., for J ¼ 50). However, note

that the use of data-dependent priors is not without criticism (e.g., Gelman et al.,

2014) and should not be adopted lightheartedly when there are other sources of

prior information available.

As in all of research, the present study comes with several limitations and points

to consider. For example, the simulation studies were based on M ¼ 10 imputa-

tions. However, larger numbers of imputations are often recommended for practice

(e.g., Graham, Olchowski, & Gilreath, 2007; see also the Empirical Example

subsection). Choosing a value larger than M ¼ 10 may be beneficial in terms of

efficiency and coverage properties, especially in applications with large fractions

of missing information (Bodner, 2008). Furthermore, the procedures for multi-

level MI featured in the present study all used standard (i.e., conjugate) families

of prior distributions (e.g., see Schafer & Yucel, 2002). Alternative priors have

been suggested in the context of Bayesian analyses and may also improve the

results obtained with MI (Barnard, McCulloch, & Meng, 2000; Gelman, 2006).

Future research may choose to elaborate on the sensitivity of MI to the speci-

fication of different prior distributions, particularly under JM (see also Liu,

Zhang, & Grimm, 2015; Schuurman, Grasman, & Hamaker, 2016).

The present study also suggests several possible extensions and topics for

future research. Throughout the study, we assumed that the latent model—that

is, the JM—holds in the population (see also Carpenter & Kenward, 2013;

Lüdtke et al., 2017; Resche-Rigon & White, in press). However, the manifest

model can often be considered “true” as well, and manifest cluster means may be

the preferred choice for estimating cluster-level effects in some multilevel anal-

ysis models (Lüdtke et al., 2008). Although we expect that the procedures con-

sidered here for the treatment of missing data at Level 2 would again provide

results similar to one another, future research should elaborate on the properties

of estimators under each method when the manifest model holds in the popula-

tion (see also Grund, Lüdtke, & Robitzsch, in press; Mistler, 2015).

Finally, we assumed that all variables followed a multivariate normal dis-

tribution, which is often not appropriate when working with categorical and
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nonnormal data. In principle, all of the procedures presented here can be applied

or adapted to categorical data, for example, by defining a set of underlying latent

variables (e.g., with threshold parameters or an appropriate link function) that

represent different categories (Carpenter & Kenward, 2013). This approach has

been implemented for multilevel JM for missing categorical data at Levels 1 and 2

(Asparouhov & Muthén, 2010; Quartagno & Carpenter, 2016). In multilevel FCS,

the same procedures as for single-level data can be used for missing data at Level 2

in conjunction with FCS-MAN (i.e., on the basis of cluster means at Level 2; see

Robitzsch et al., 2017). Finally, the generation of plausible values under FCS-LAT

can be adapted to categorical data by employing an appropriate model for the

underlying variables at Level 1 (e.g., binary, multinomial, or ordered logit). Non-

normal data can be addressed by performing MI on the basis of transformed

variables (Carpenter & Kenward, 2013; He & Raghunathan, 2006; Schafer,

1997; Schafer & Olsen, 1998); however, it has also been shown that normal

distribution-based MI is fairly robust against departures from normality (e.g.,

Demirtas, Freels, & Yucel, 2008; von Hippel, 2013).

To summarize, we believe that the current state of statistical software offers

several options for treating missing data at Level 2 in an adequate way. Especially

when compared with simpler methods such as LD or single-level MI, both of

which ignore important characteristics of the data, the current procedures for

multilevel MI are useful and effective additions to the researcher’s toolbox. Instead

of arguing for the use of only one of these procedures, we believe that it is most

important for researchers to be aware of the specific challenges that arise during

multilevel MI and make an informed decision about which procedure best fits the

structure of their data and their respective research question. Finally, we hope that

the thoughts presented in this article will open up and motivate questions for future

research on the treatment of missing data in multilevel studies.

Appendix

This Appendix provides additional theoretical arguments regarding the use of

manifest versus latent cluster means under FCS for missing data at Level 2.

Population Model

Let zj denote the values of a centered variable at Level 2 and xij ¼ uj þ eij

denote values for a set of centered variables at Level 1 with independent com-

ponents uj and eij. Then, for cluster j of size nj, we can write zj as

zj ¼ uj�þ wj ; ðA1Þ
where wj is independent of uj and eij. Further defining T 
 VarðujÞ,
Σ 
 VarðeijÞ, and f2 
 VarðwjÞ as well as � 
 T�, the joint distribution of all

variables yij ¼ ðxij; zjÞ can be summarized as
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VarðyijÞ ¼
Tþ Σ �T

� �TT�þ f2

� �
: ðA2Þ

We introduce the following notation for further development. Specifically, we

define a probability distribution for the cluster sizes nj independent of xij and zj,

where S denotes the set of unique cluster sizes, so that pk 
 Pðnj ¼ kÞ with 0 	
pk 	 1 for all k 2 S and

P
k2Spk ¼ 1. We assume that z is partially missing,

z ¼ ðzmis; zobsÞ, with probability a whereas x is observed. For simplicity, we omit

superscripts for x where possible. We further assume (a) that the number of

clusters approaches infinity (J !1), so that posterior variances become zero,

and (b) that zj is MCAR, so that a is independent of xij and nj. With no loss of

generality, we assume that the first J0 clusters have zj missing, the other J1

observed ðj ¼ 1; . . . ; J0; J0 þ 1; . . . ; JÞ, where the proportion J0

J
of missing val-

ues in z converges to a as the sample size goes to infinity (i.e., limJ!1
J0

J
¼ a).

FCS-LAT

To generate imputations z
imp
j , a regression model on the basis of the latent cluster

means (uj) of xij can be used. To show that the joint distribution of yij is preserved

during MI, one must show that the distribution of the completed data ycom
ij ¼

ðyimp
ij ; yobs

ij Þ including z
imp
j is identical to Equation A2. As argued by van Buuren

(2012) and Hughes et al. (2014), sampling from a sequence of univariate condi-

tional normal distributions is equivalent to sampling from a joint multivariate

normal distribution. This can be applied to the joint distribution Pðxij; uj; zjÞ with

unknown uj and missing zj by sampling from the following conditional

distributions:

u
imp
jp *Pðujpjxij; ujð�pÞ; zjÞ

z
imp
j *Pðzjjxij; ujÞ ;

ðA3Þ

with the notation as defined in the main text. The conditional distributions can

further be simplified as Pðzjjxij; ujÞ ¼ PðzjjujÞ because zj is conditionally inde-

pendent of xij given uj. Consequently, under FCS-LAT, imputations z
imp
j are

generated from the conditional model

z
imp
j ¼ u

imp
j �þ w

imp
j ; ðA4Þ

where estimates of � and f2 are obtained from the observed data, and posterior

draws for u
imp
j are obtained as described in the main text (e.g., using the

plausible value approach by Mislevy, 1991). This is sufficient because (a) all

ujp are conditionally independent of xij given zj and ujð�pÞ and (b) zj is con-

ditionally independent of xij given uj (see above). As a result, the model in

Equation A4 is consistent with Equations A2 and A3, and FCS-LAT on the
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basis of u
imp
j is consistent with drawing imputations directly from the joint

model (Equation A2).

FCS-MAN

Alternatively, the imputation model can be based on the manifest cluster means

ð�x�j ¼ uj þ �e�jÞ of xij, and imputations can be generated from the following

equation

z
imp
j ¼ �x�j�þ Eimp

j ; ðA5Þ

where the Eimp
j is distributed normally with mean zero and variance VarðEimp

j Þ. In

general, the regression coefficients in the manifest (�) and latent imputation

model (�) do not coincide (Croon & van Veldhoven, 2007). The regression

coefficients in Equation A5 are estimated as

b� ¼ 1

J1

XJ

j¼J0þ1

�xT
�j�x�j

" #�1

1

J1

XJ

j¼J0þ1

�xT
�jz

obs
j

 !
: ðA6Þ

Note that Eð�xT
�j�x�jÞ ¼ Tþ 1

nj
S and Eð�xT

�jz
obs
j Þ ¼ T�. Then, as the number of clus-

ters goes to infinity (J !1), the expected value of b� can then be expressed as

Eðb�Þ ¼J!1 X
k2S

pk Tþ 1

k
Σ

� �" #�1

T�: ðA7Þ

In the special case with balanced data with a constant cluster size nj ¼ k0, it is further

worth noting that Eð�xT
�j�x�jÞ ¼ Tþ 1

k0
Σ

� �
, in which case Equation A7 reduces to

Eðb�Þ ¼J!1
Tþ 1

k0

Σ
� ��1

T�: ðA8Þ

Carpenter and Kenward (2013) showed for the case with balanced data that the

conditional independence of zj and xij also holds given �x�j, that is,

PðzjjxijÞ ¼ Pðzjj�x�jÞ, so that FCS-MAN would be consistent with the joint model

(Equation A2). However, it may be expected that this no longer holds in the

general, unbalanced case (see also Resche-Rigon & White, in press). In the

following, we show which aspects of the joint distribution are preserved under

FCS-MAN in balanced and unbalanced data.

Variance of z. The fact that the variance of z is unbiased can easily be shown with

the decomposition of variance in the linear model. Let ẑj ¼ �x�jb�. Under the given

assumptions, it holds that Varðẑmis
j Þ ¼ Varðẑobs

j Þ and VarðEimp
j Þ ¼ VarðEobs

j Þ. As a

result, Varðzimp
j Þ ¼ Varðẑmis

j Þ þ VarðEimp
j Þ ¼ VarðzjÞ, showing that the variance

of zcom
j ¼ ðzobs

j ; z
imp
j Þ is unbiased.
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Estimators of the covariance of x and z. To elaborate on the estimation of the

covariance, we focus on maximum likelihood (ML) estimation. However,

because the standard ML estimator cannot be expressed in closed form in the

general case with unbalanced data, we study Muthén’s ML estimator (MUML; B.

O. Muthén, 1990). The MUML estimator (b�) allows estimating � in closed form

and can be expressed as

b� ¼ 1

J

XJ

j¼1

nj

cJ

�xT
�jzj ; ðA9Þ

where cJ ¼ ð
PJ

j¼1njÞ2 �
PJ

j¼1n2
j

h i PJ
j¼1njðJ � 1Þ

h i�1

is a function of the clus-

ter sizes with limJ!1 cJ ¼ �n1 ¼
P

k2Spk � k (i.e., the average cluster size). In

complete data, b� is identical to the ML estimator in the case with balanced data

(B. O. Muthén, 1990) and remains an asymptotically (J !1) unbiased estima-

tor of � in the unbalanced case (Yuan & Hayashi, 2005). In balanced data with

cluster size nj ¼ k0, the estimator reduces to

b� ¼ 1

J

XJ

j¼1

�xT
�jzj : ðA10Þ

In the following, we use this estimator to show the potential bias in estimating �

from the completed data zcom
j , where imputations z

imp
j have been generated under

FCS-MAN.

Covariance of x and z in balanced data. In balanced data with cluster size

nj ¼ k0, the covariance in Equation A10 is estimated on the basis of both the

observed and imputed data zcom
j ¼ ðzobs

j ; zimp
j Þ as follows:

b� ¼ 1

J

XJ0

j¼1

�xT
�jz

imp
j þ

XJ

j¼J0þ1

�xT
�jz

obs
j

 !
: ðA11Þ

The expected value of b� can then be expressed as

Eðb�Þ ¼ E
1

J

XJ0

j¼1

�xT
�jz

imp
j þ

XJ

j¼J0þ1

�xT
�jz

obs
j

 !" #
¼ E

J0

J

� �
E �xT

�jz
imp
j

� �
þ E

J1

J

� �
E �xT

�jz
obs
j

� �
:

ðA12Þ

In the limit of J !1, it holds that Eð�xT
�jz

imp
j Þ ¼

J!1
Eð�xT

�j�x�jÞEðb�Þ. Then, by

further noting that Eð�xT
�jz

obs
j Þ ¼ T� as before and by plugging in Equation A8,

it can be shown that Equation A12 converges to

Eðb�Þ ¼J!1 a
�

Tþ 1

k0

Σ
��

Tþ 1

k0

Σ
	�1

T�þ ð1� aÞT� ¼ T� ¼ � ; ðA13Þ

Grund et al.

345



which shows that b� is asymptotically unbiased in balanced data.

Covariance of x and z in unbalanced data. In the general case with unbalanced

data, the potential bias in b� is more difficult to evaluate because (a) the

cluster sizes included in Equation A9 complicate calculations and (b) the

z
imp
j are not independent of eij under FCS-MAN as would be the case in

complete data (Croon & van Veldhoven, 2007). Instead, we follow the law

of total expectation by averaging over the conditional expectations with fixed

cluster sizes nj ¼ k. Let b�k denote the value of b� for clusters of size nj ¼ k.

By conditioning on cluster size, we also obtain balanced subsets of the data, in

which we can use Equation A10 instead of Equation A9. Consequently, b�k

can be expressed as

b�k ¼ b�jnj¼k ¼ 1

JðkÞ

X
j2J 0ðkÞ

�xT
�jz

imp
j þ

X
j2J 1ðkÞ

�xT
�jz

obs
j

0@ 1A; ðA14Þ

where J 0ðkÞ and J 1ðkÞ denote two sets of clusters with size k and with missing

and observed zj, respectively, J0ðkÞ and J1ðkÞ denote the number of clusters

therein, and JðkÞ ¼ J0ðkÞ þ J1ðkÞ denotes the total number of clusters of size k.

By noting that Eð�xT
�jz

imp
j Þ ¼

J!1
Eð�xT

�j�x�jÞEðb�Þ as before and by plugging in Equa-

tion A7, the expected value of b�k can be written as

Eðb�kÞ ¼ E
1

JðkÞ

X
j2J 0ðkÞ

�xT
�jz

imp
j þ

X
j2J 1ðkÞ

�xT
�jz

obs
j

0@ 1A24 35
¼ E

�
J0ðkÞ

JðkÞ

�
E �xT

�jz
imp
j

� �
þ E

�
J1ðkÞ

JðkÞ

�
E �xT

�jz
obs
j

� �

¼J!1 a
�

Tþ 1

k
S
� X

k02S
pk0 Tþ 1
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where k0 2 S is used to denote all cluster sizes besides and including k.

This expression is generally not equal to � unless Tþ 1
k

Σ ¼P
k02Spk0 Tþ 1

k0 Σ
� �
 ��1

.

In the full data set, b� is again based on both the observed and imputed data,

zobs
j and z

imp
j , and can be written as

b� ¼ 1
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XJ
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: ðA16Þ
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The expected value of b� can then be expressed as
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which illustrates the contribution of the conditional expectations given in Equa-

tion A15. In the limit as J !1, this expression converges to

Eðb�Þ ¼J!1 a
X
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k 02S
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ðA18Þ
This expression is generally not equal to �. Consequently, the asymptotic bias ofb� as an estimator of � can be expressed as

Biasðb�Þ ¼ a
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pk
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� 1
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�
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k
Σ
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� ;

ðA19Þ

which is not generally zero in unbalanced data. Because the expected value of b�
converges with that of the ML estimator as the number of cluster becomes large

(J !1), we expect that regression coefficients obtained under FCS-MAN

should be biased as well.6
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Notes

1. In the general formulation of the JM, predictor variables can be included in the

model if they do not contain any missing data (i.e., they are completely

observed). The simplified model discussed here was chosen because (a) it facil-

itates the presentation and comparison of the computational procedures, (b) it

allows for arbitrary patterns of missing data, and (c) it can be applied in any

situation in which the analysis model is a multilevel random intercept model.

2. In the more general formulation of the JM, which includes additional pre-

dictor variables on the right-hand side of the model, it is possible to include

manifest cluster means as predictor variables as long as the respective vari-

ables are completely observed. This specification of the JM is conceptually

similar to the fully conditional specification (FCS) approach and will not be

considered further (for a discussion, see Enders et al., 2016).

3. This approach is similar to obtaining “empirical Bayes” estimates for random

effects in multilevel modeling (e.g., Laird & Ware, 1982; Morris, 1983). The

estimation of the model parameters can be achieved by maximum likelihood

(ML) or Bayesian methods. Here, we used Bayesian estimates of the model

parameters because ML led to convergence issues in smaller samples. As an

alternative, a fully Bayesian procedure can be used in which the estimates bθ�ðtÞ
are replaced with Bayesian posterior draws θ�ðtÞ (see the Discussion section).

4. The values for l are given here in a standardized metric. The actual values of

l in the data-generating model were different because they also depended on

the intraclass correlation of y and the sample size at Level 1. The actual values

were chosen in such a way that they implied a standardized effect of y of size

0, 0.5, and 1, respectively.

5. In practice, the procedure would need to be repeated for each plausible value,

resulting in imputations “nested” within plausible values (Rubin, 2003; Weir-

ich et al., 2014). Unless differences in selection probability were fully

accounted for by the observed variables, these issues would need to be

addressed by including survey weights in the imputation and the analysis

model (Rust, 2013; Rutkowski, Gonzalez, Joncas, & von Davier, 2010).

6. It is interesting that unbiased estimates of � might be obtained under FCS

with manifest cluster means with an estimator that does not weight by cluster

size, which can be seen by plugging in k
�n1
¼ 1 into Equation A19. However,

because such an estimator is unlikely to perform well in general, this is left as

a topic for future research.
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