
Article

Multiple Imputation of
Missing Data for Multilevel
Models: Simulations and
Recommendations
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Abstract
Multiple imputation (MI) is one of the principled methods for dealing with missing data. In addition,
multilevel models have become a standard tool for analyzing the nested data structures that result
when lower level units (e.g., employees) are nested within higher level collectives (e.g., work
groups). When applying MI to multilevel data, it is important that the imputation model takes the
multilevel structure into account. In the present paper, based on theoretical arguments and com-
puter simulations, we provide guidance using MI in the context of several classes of multilevel
models, including models with random intercepts, random slopes, cross-level interactions (CLIs),
and missing data in categorical and group-level variables. Our findings suggest that, oftentimes,
several approaches to MI provide an effective treatment of missing data in multilevel research. Yet
we also note that the current implementations of MI still have room for improvement when handling
missing data in explanatory variables in models with random slopes and CLIs. We identify areas for
future research and provide recommendations for research practice along with a number of step-by-
step examples for the statistical software R.

Keywords
multilevel, missing data, multiple imputation, random intercept model, random coefficients model,
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Multilevel models have become one of the standard tools for analyzing clustered empirical data.

Such data are often found in organizational psychology, for example, when employees are nested

within work groups or enterprises, or in longitudinal studies when measurement occasions are nested

within persons. In addition, empirical data are often incomplete, for example, when some
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participants fail to answer all of the items on a questionnaire. Several authors have advocated the use

of modern missing data techniques such as multiple imputation (MI) rather than traditional

approaches such as listwise deletion (LD; Allison, 2001; Enders, 2010; Little & Rubin, 2002;

Newman, 2014; Schafer & Graham, 2002). One central requirement of MI is that the imputation

model must be at least as general as the model of interest in order to preserve its key features. In

multilevel data, it is important that the imputation model takes the multilevel structure into account

(e.g., Andridge, 2011; Drechsler, 2015). However, depending on the research question, the multi-

level structure may manifest itself in the analysis model in a number of ways (e.g., random intercepts

and slopes, relations between variables within and between groups), leading to a multitude of

possible multilevel analysis models, each directed at different research questions (e.g., Aguinis &

Culpepper, 2015; Snijders & Bosker, 2012).

The motivation behind the present paper is twofold. First, we offer simulation results regarding

the performance of MI when the substantive analysis model belongs to one of several types of

multilevel models. Second, we provide an introduction to and recommendations for MI of multilevel

data directed toward readers who are not yet familiar with the often technical literature on MI. Our

article is divided into four sections. In the first section, we focus on the multilevel random intercept

model and discuss imputation procedures that are suitable for application in such models. In the

second section, we focus on the random coefficients model and the specific challenges that arise

when working with random slopes and cross-level interactions (CLIs). In the third section, we

briefly discuss missing data in categorical and group-level variables. In each section, we present

results from simulation studies in which we used different MI procedures as well as full-information

maximum likelihood (FIML). Finally, in the last section, we provide recommendations for how to

handle missing data for different types of multilevel models. We conclude with a discussion of our

findings and possible topics for future research.

Missing Data and Multiple Imputation

The basic idea of MI is to replace missing values by forming an “informed guess” that is based on the

observed data and a statistical model (the imputation model). Multiple imputation generates several

(M) replacements for the missing data by drawing repeatedly from the posterior predictive distri-

bution of the missing data, given the observed data and the parameters of the imputation model. The

M data sets completed in this manner are then analyzed separately, yielding M sets of parameter

estimates. To obtain final estimates and inferences, these results are pooled using the rules described

in Rubin (1987; see also Enders, 2010).

The use of MI in most (but not all) implementations is predicated on the assumption that the data

are missing at random (MAR). The definition of MAR, according to Rubin (1976), assumes that a

hypothetical complete data set can be divided into observed and unobserved parts, Y ¼ ðYobs;YmisÞ,
where an indicator matrix R denotes which data are missing or observed. According to Rubin

(1976), data are MAR if the probability of observing data, PðRÞ, is independent of the unobserved

data given the observed data, that is, PðRjYÞ ¼ PðRjYobsÞ. In other words, under MAR, there is no

link between the chance of observing a value and the value itself, given the data that one has

observed. A special case of this occurs when PðRÞ is completely independent of the data, that is,

PðRjYÞ ¼ PðRÞ. This is referred to as missing completely at random (MCAR). If the MAR assump-

tion is violated, that is, data are missing not at random (MNAR), the application of MI requires

strong assumptions about the missing data mechanism. Such applications are relatively rare and are

most often used as sensitivity analyses (see Carpenter & Kenward, 2013). In the present paper, we

focus on applications of MI that operate under MAR.

Two aspects make MI a particularly attractive method for dealing with missing data. First, MI

recognizes the uncertainty that is due to missing data by generating multiple (as opposed to single)
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replacements for each missing value, and by drawing the parameters of the imputation model from

Bayesian posterior distributions, given the currently imputed data and a set of prior beliefs. Second,

because the imputation phase is separated from the analysis phase, MI is able to make full use of the

data by including variables in the imputation model that are either predictive of missingness, thus

improving the plausibility that MAR holds, or related to the variables of interest, thus improving the

power of its predictions (Collins, Schafer, & Kam, 2001).

Multiple Imputation for Multilevel Models

A crucial point in the application of MI to multilevel data is that the imputation model not only

includes all relevant variables, but also that it “matches” the model of interest (i.e., the substantive

analysis model; see Meng, 1994; Schafer, 2003). In other words, the imputation model must capture

the relevant aspects of the analysis model, making the imputation model at least as general as (or

more general than) the analysis model. If the imputation model is more restrictive than the analysis

model, then imputations are generated under a simplified set of assumptions, and the results of

subsequent analyses may be misleading. For example, consider the case in which the model of

interest is a multilevel random intercept model (Snijders & Bosker, 2012) in which an individual-

level outcome Y is regressed on an individual-level explanatory variable X

Yij ¼ g00 þ g10ðXij � �X �jÞ þ g01
�X �j þ u0j þ eij; ð1Þ

where �X �j denotes the group mean of X in group j, ðXij � �X �jÞ denotes the individual deviation in X

for a person i in group j, and g10 and g01 denote the regression coefficients of X within and between

groups, respectively (see Hofmann & Gavin, 1998; Kreft, de Leeuw, & Aiken, 1995). The intercepts,

u0j, and the residuals, eij, are assumed to follow independent normal distributions with mean zero

and with variances t2
0 and s2, respectively.

Two aspects of the model in Equation 1 are worth noting, and both must be accommodated during

MI in order for subsequent analyses to yield proper results. First, the model accounts for the

clustered structure of the data by including random effects for each group (Snijders & Bosker,

2012). Therefore, the imputation model must also take the clustered structure into account. Failing

to do so, for example, by using single-level MI, might lead to biased parameter estimates and might

distort statistical decision making (e.g., Andridge, 2011; Enders, Mistler, & Keller, 2016; Lüdtke,

Robitzsch, & Grund, 2017; Taljaard, Donner, & Klar, 2008). Second, the model differentiates

between the effects of X at the individual and the group level (i.e., for ðXij � �X �jÞ and �X �j). If the

imputation model does not allow these effects to be different, then the parameters will be “conflated”

during MI, and estimates obtained in subsequent analyses may be biased (see Enders et al., 2016;

Lüdtke et al., 2017; Preacher, Zyphur, & Zhang, 2010). In other words, ignoring the existence of

separate effects for ðXij � �X �jÞ and �X �j in the imputation model will make it more difficult to find

them in subsequent analyses. In the following section, we discuss several MI procedures that can be

used to accommodate the multilevel random intercept model.

Joint Modeling and the Fully Conditional Specification of MI

The procedures available for multilevel MI can be roughly divided into two broad paradigms: the

joint modeling approach (JM) and the fully conditional specification of MI (FCS). Both approaches

offer the necessary tools for dealing with multilevel missing data. Here, we consider the JM

approach implemented in the pan package (Schafer & Yucel, 2002) and the FCS approach known

as “multiple imputation by chained equations” implemented in the mice package (van Buuren &

Groothuis-Oudshoorn, 2011) in the statistical software R (R Core Team, 2016).
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Joint modeling (JM). In the JM approach, a single model is specified for all variables with missing data,

and imputations are simultaneously generated from this model for all variables with missing data.

For individual-level variables, the joint model reads

Yij ¼ Xijβþ Zijuj þ eij; ð2Þ

where Yij contains a number of individual-level target variables with arbitrary patterns of missing

data, Xij contains fully observed predictor variables with associated fixed effects β, Zij contains fully

observed predictor variables with associated random effects uj, and eij denotes the residuals at the

individual level. The random effects, uj, are assumed to follow a multivariate normal distribution

with mean zero and covariance matrix Ψ. The residuals, eij, follow a multivariate normal distribution

with mean zero and covariance matrix Σ.

The design matrices, Xij and Zij, on the right-hand side of the model equation may contain any

number of variables as long as they are fully observed (see Schafer & Yucel, 2002). If the model of

interest is a multilevel random intercept model, it is possible to include all variables (both partially

and fully observed) as target variables on the left-hand side of the model equation, whereas the right-

hand side includes only the intercept (i.e., Xij ¼ Zij ¼ 1). For example, consider the random inter-

cept model in Equation 1 and assume that X and/or Y are partially missing. Treating both X and Y as

target variables, the JM becomes

½Xij; Yij�T ¼ ½b0ðxÞ;b0ðyÞ�T þ ½ujðxÞ; ujðyÞ�T þ ½eijðxÞ; eijðyÞ�T ; ð3Þ

where the random effects ½ujðxÞ; ujðyÞ�T and the residuals ½eijðxÞ; eijðyÞ�T follow independent multi-

variate normal distributions with mean zero and covariance matrices Ψ ¼ c2
x cxy

cxy c2
y

" #
and

Σ ¼ s2
x sxy

sxy s2
y

� �
. In this specification, the joint model decomposes the variables into separate within-

and between-group components represented by ½eijðxÞ; eijðyÞ�T and ½ujðxÞ; ujðyÞ�T , thus allowing for

different relations (i.e., covariances) between X and Y to be estimated at the individual and the

group level (Lüdtke et al., 2017; see also Grund, Lüdtke, & Robitzsch, 2016b).1 Similar models are

also implemented in the statistical software Mplus (L. K. Muthén & Muthén, 2012; see also Enders

et al., 2016) and in the R package jomo (Quartagno & Carpenter, 2016).

The FCS approach. In contrast to the JM approach, the FCS approach imputes missing data sepa-

rately for each variable with missing data, conditioning on some or all of the other variables in the

data set. To address multivariate patterns of missing data, the FCS algorithm iterates back and

forth between different target variables. Again, consider the analysis model in Equation 1. For

missing data in X and Y , an appropriate FCS approach may generate imputations on the basis of

the following two univariate models

Xij ¼ b0ðxÞ þ b1ðxÞðYij � �Y �jÞ þ b2ðxÞ �Y �j þ ujðxÞ þ eijðxÞ
Yij ¼ b0ðyÞ þ b1ðyÞðXij � �X �jÞ þ b2ðyÞ �X �j þ ujðyÞ þ eijðyÞ:

ð4Þ

The FCS approach iterates between these equations, generating imputations for each missing vari-

able in turn. If both variables are affected by missing data, then the group means are updated at each

iteration of the sampling algorithm on the basis of the most recent imputations for X and Y (passive

imputation; see below). Similar to JM, unsystematic differences between groups in X and Y are

captured by the inclusion of random effects, ujðxÞ and ujðyÞ. In contrast to JM, however, the FCS

approach uses the observed group means, �Y �j and �X �j, to represent the different relations between X

and Y at the individual and the group level.2 For missing Y , there is no difference between the

imputation and the analysis model. For missing X , the imputation model has similar implications
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as in the JM approach, but it relies not only on random effects but also on the observed group means to

represent the relation between X and Y at the group level. In applications with more than two variables,

the general approach remains the same: For each additional variable with missing data, an additional

equation must be specified, each conditioning on the other variables and their respective group means.

Summary. Summing up, there are two points worth noting. First, both the JM and the FCS approach

allow for different relations between variables to be estimated at the individual and the group level.

Second, the two approaches differ in the way in which they accomplish this task. In the JM, the

group level is represented by random effects, whereas the FCS approach relies on the observed group

means. However, even though the general approach is different, it has been argued that the two

approaches imply similar covariance structures at the individual and the group level and can be used

interchangeably (e.g., Carpenter & Kenward, 2013, p. 220; Lüdtke et al., 2017; Mistler, 2015;

however, see also Resche-Rigon & White, 2016). Therefore, we expected the two procedures to

yield approximately the same, unbiased parameter estimates, making both suitable for MI in quite

general applications of the multilevel random intercept model.

Model-Based Treatment using FIML

As an alternative to MI, it is often possible to use model-based procedures such as FIML to treat

missing data (for an introduction, see Enders, 2010). FIML is often considered to be very user-

friendly because missing data are handled directly during the estimation of the analysis model

without requiring any additional steps to be taken by the user (e.g., Allison, 2012; Graham,

2009). Currently, the most popular and versatile implementation of FIML for multilevel models

is available in the statistical software Mplus (L. K. Muthén & Muthén, 2012). FIML estimates the

parameters of the analysis model directly from the incomplete data set by maximizing the observed-

data likelihood. As a result, the use of FIML to treat missing data is closely tied to the analysis model

(Schafer & Graham, 2002). In the traditional multilevel model (e.g., Equation 1), the observed-data

likelihood includes only the dependent variable in the analysis (e.g., Y ), and distributional assump-

tions are imposed only on that variable. For that reason, FIML initially deals with missing data only

in the dependent variable, whereas cases with missing data in explanatory variables are often

discarded (see also Hox, van Buuren, & Jolani, 2016). To treat missing data in explanatory variables

(e.g., X ), the model must be extended in such a way that the likelihood function will incorporate all

variables with missing data, thus imposing additional distributional assumptions on the data. In

Mplus, this is typically achieved by specifying a set of latent variables for the explanatory variables

with missing data (for an illustration, see Enders, 2010).

Although it may not be immediately obvious, this strategy can have negative side-effects in

multilevel modeling because of the way in which Mplus estimates multilevel models with latent

variables. For example, consider the model in Equation 1 with missing values in X and Y . To

estimate this model, Mplus uses a decomposition approach similar to the JM, in which the two

variables are decomposed into (latent) individual- and group-level components, each of which is

assumed to follow a multivariate normal distribution (Rabe-Hesketh, Skrondal, & Zheng, 2012).

However, in doing so, Mplus adopts a different analysis model in which the group-level effects of X

on Y are represented by latent variables instead of observed group means (i.e., X�j) as they are in the

analysis model (for a discussion, see Lüdtke et al., 2008). As a result, parameter estimates may

change substantially, both in meaning and in value (Grund, Lüdtke, & Robitzsch, in press). To avoid

this shift in the analysis model, the user may calculate the group means beforehand from the

observed data and specify a latent variable only for the within-group component of the explanatory

variables (i.e., Xij � �X �j). This strategy tends to reduce bias in group-level effects and will be

preferred for the remainder of this article (see also Grund et al., in press). In addition, because the
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individual- and group-level components are assumed to follow a multivariate normal distribution,

only linear relations are allowed between variables with missing data, and handling missing data in

categorical variables may be challenging. The Mplus syntax files needed to perform FIML estima-

tion for the models presented here are given in the supplemental online materials.

Study 1: Random Intercept Models

Next, we present findings from a computer simulation study in which we compared the performance

of different MI procedures in the context of multilevel random intercept models. In addition to the

JM and the FCS approach, we also investigated single-level MI, which ignores the multilevel

structure altogether, LD, and FIML as discussed above. The main question was which procedures

would preserve the relevant features of the substantive analysis model. Here, we provide only a brief

sketch of the study’s design. For interested readers, we provide further details in Appendix A.

The substantive analysis model was the random intercept model in Equation 1, and the data were

generated from this model. The parameters of the data-generating model were chosen in such a way

that they would imply a given value for the intraclass correlations (ICCs) of X and Y . Missing data

were generated on Y or X in either a random fashion (MCAR) or conditional on the other variable

(MAR). A summary of the simulation conditions is provided in Table 1. We varied the number of

groups (k ¼ 50, 100, 200, 500), the number of individuals within each group (n ¼ 5, 10), the ICCs of

X and Y (rI ;X ¼ rI ;Y ¼ :10, .20, .50), the effect of �X �j (g01 ¼ .20, .50), and the missing data

mechanism. The effect of ðXij � �X �jÞ was held constant at .20 (g10), thus providing conditions in

which the effects at the individual and the group level were equal or different in the population

Table 1. Simulation Conditions for the Data-Generating Model and the Generation of Missing Values

Study 1 Study 2 Study 3a Study 3b

Data conditions
No. of individuals 5, 10 5, 10 5, 10 5, 10
No. of groups 50, 100, 200, 500 50, 100, 200, 500 50, 100, 200, 500 50, 100, 200, 500
ICC of X and Y .10, .20, .50 .10, .20, .50 .10, .20, .50 .10, .20, .50
ICC of D .10, .20, .50
Correlation XW .20 .20
Correlation XD .20

Model parameters
Effect of ðXij � �X�j) .20 .50 .50 0
Effect of �X�j .20, .50 0 .50 .20
Effect of Wj .35 .20
Effect of Dij .20
CLI ðXij � �X�jÞWj .0, .20
GLI �X�jWj 0
Total slope variance .10
Int.-slope covariance 0

Missing values
Pattern Y*X, X*Y Y*X, X*Y D*Y W*Y
Mechanism MCAR, MAR MCAR, MAR MCAR, MAR MCAR, MAR
Proportion (%) 25 25 25 25

No. of conditions 192 192 48 48

Note: The residual intercept and slope variance were determined by the remaining simulation parameters and by setting a

target value for the ICC of Y and the total slope variance (g2
11 þ t2

1). CLI ¼ cross-level interaction; GLI ¼ group-level
interaction.
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model. Taken together, these conditions mimic typical applications of multilevel models in cross-

sectional and longitudinal organizational research (e.g., smaller and larger ICCs, smaller and larger

numbers of observations per unit or group). In addition, they provide information about the small-

and large-sample properties of each procedure and about conditions that are interesting from a

methodological point of view (e.g., with or without contextual effects). Each condition was repli-

cated 1,000 times. We applied the following procedures to each data set:

1. LD

2. single-level FCS, ignoring the multilevel structure (FCS-SL)

3. multilevel FCS with separate within- and between-group effects (Equation 4; FCS-ML)

4. multilevel JM (Equation 2; JM)

5. FIML

The parameters of interest were the ICC of Y , estimated from an empty model, and the regression

coefficients within and between groups, g10 and g01, from the substantive analysis model. For each

condition, each procedure, and each parameter, we calculated the bias, the RMSE, and the coverage

of the 95% confidence interval to evaluate performance. The bias is defined as the difference

between an estimator’s average value and its true value. The RMSE is the square root of the average

squared difference between average estimates and true values, combining information about bias

and efficiency of parameter estimates. The coverage of the 95% confidence interval denotes the

relative frequency with which the 95% confidence interval covers the true value. The properties of

an estimator may be considered suboptimal if the bias exceeds 10%, the RMSE is large in compar-

ison with other procedures, or the coverage rate is below 90% (or very close to 100%).

Results. Our findings are summarized in Table 2 and Figure 1. The complete collection of results for

the parameters of interest is provided in the supplemental online materials. Consistent with our

expectations, single-level MI (FCS-SL) reduced the ICC of Y when Y was partially missing. In such

a case, the between-group regression coefficient was biased downwards, and the within-group

regression coefficient was biased upwards to different extents as determined by the true magnitude

of the ICCs of X and Y . With missing values in X , FCS-SL either over- or understated the true size of

the regression coefficients, depending on the ICCs. As shown in Figure 1, this bias did not decrease

in larger samples. The results from the two appropriate MI procedures (FCS-ML and JM) were

similar to one another. Both procedures had a slight tendency to overestimate the ICC of Y and to

underestimate the between-group coefficient in smaller samples (i.e., k ¼ 100 or lower, with n ¼ 5)

with low ICCs (rI ;X ¼ rI ;Y ¼ :10). However, this bias was seldom substantial and decreased as the

sample size increased (see Figure 1). FIML produced unbiased estimates of the regression coeffi-

cients with missing Y but biased estimates of the between-group regression coefficient (g01) with

missing X . Finally, LD led to substantially biased estimates of all parameters of interest when data

were MAR, especially when values were missing in X . In conditions in which the within- and

between-group coefficients were equal (g01 ¼ :20), the results were essentially the same, and both

JM and FCS-ML provided approximately unbiased estimates of the parameters of interest.

The coverage of the 95% confidence interval was acceptable in all conditions for FCS-ML and in

all but the most extreme conditions under JM. However, owing to persistent bias, the coverage rates

under FCS-SL frequently dropped below 90% in larger samples (i.e., above k ¼ 200, n ¼ 10 or

k ¼ 500, n ¼ 5). Coverage rates for FIML were acceptable with missing Y , but dropped below 90%
with missing X ; those for LD were acceptable under MCAR but unacceptable under MAR. Finally,

the RMSE tended to be lowest under FCS-ML and JM as well as under FIML with missing Y . By

contrast, the RMSE for the parameters of interest tended to be larger under FCS-SL as well as under

LD and FIML with missing X , indicating that these procedures were altogether less accurate and
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ĝ 1
0

�
6
.8

0
.0

3
9
1
.6

6
.6

0
.0

3
9
2
.7

1
.1

0
.0

3
9
4
.1

3
.7

0
.0

3
9
3
.9

1
.6

0
.0

3
9
4
.2
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efficient. For example, the average RMSE for the between-group regression coefficient was 3:3%

larger under LD with missing Y as compared with JM; with missing X , this difference increased to

9:7%. Note also that the small-sample bias under JM and FCS-ML (e.g., for the ICC of Y ) did not

increase the RMSE, indicating that these procedures remained accurate and efficient overall, even in

smaller samples. All in all, our results suggest that the JM and the FCS-ML approach are equally

appropriate in the context of the multilevel random intercept model.

Random Slopes and Cross-Level Interactions

Beyond the scope of random intercept models, those engaged in organizational research often seek

to understand how the effects of various quantities differ across higher level organizational units.

Multilevel models with random slopes allow (a) individual-level effects to vary across groups and

(b) for the inclusion of group-level explanatory variables to explain that variability (i.e., CLIs).

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

Figure 1. Estimated bias for the between-group regression coefficient of X (g01) and the ICC of Y (rI, Y) in
Study 1 for different numbers of individuals (n) and groups (k), moderate ICCs (rI, X ¼ rI, Y ¼ .20), and different
missing data mechanisms (MAR; Y * X and X * Y). LD¼ listwise deletion; FCS-SL ¼ single-level FCS; FCS-ML
¼ multilevel FCS; JM ¼ multilevel JM; FIML ¼ full-information maximum likelihood.
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Recently, Aguinis & Culpepper (2015) stated that random slopes and CLIs were “at the heart of

[ . . . ] any theory that considers outcomes to be a result of combined influences emanating from

different levels of analysis,” adding that “the extent to which we understand the presence of cross-

level interactions is an indication of theoretical progress” (p. 156).

Consider a multilevel random coefficients model (Snijders & Bosker, 2012) in which an

individual-level outcome Y is regressed on an individual-level variable X and a group-level variable

W . In addition to the random intercept, we allow the individual-level slope to vary across groups,

and we include a CLI to account for some of that variation

Yij ¼ g00 þ g10ðXij � �X �jÞ þ g01
�X �j þ g02Wj þ g11WjðXij � �X �jÞ þ g03Wj

�X �j
þ u0j þ u1jðXij � �X �jÞ þ eij;

ð5Þ

where u1j denotes the random slope associated with ðXij � �X �jÞ in group j, g11 denotes the CLI, and

g03 denotes the group-level interaction of �X �j and Wj. The random effects ðu0j; u1jÞT are assumed to

follow a multivariate normal distribution with mean zero and covariance matrix T.

Two aspects of the model in Equation 5 are worth noting. First, the slope of the regression of Y on

X is assumed to vary across groups. Incorporating the variability in the slope in the imputation

model is particularly important if the slope variance itself is of interest, because ignoring the slope

variance may lead one to underestimate it in subsequent analyses. Second, the CLI denotes the

degree to which the effect of ðXij � �X �jÞ changes as a function of Wj. Thus, if estimating the CLI is of

interest, then the imputation model should allow for the individual-level effect of X to interact with

W (similarly for the interaction at the group level).

Accommodating Random Slopes and CLIs

In contrast to applications in the multilevel random intercept model, performing MI is not straight-

forward when the model of interest includes random slopes and CLIs, particularly when the

explanatory variables contain missing data (e.g., Enders et al., 2016; Gottfredson, Sterba, &

Jackson, 2016; Grund, Lüdtke, & Robitzsch, 2016a). For example, consider the model of interest

in Equation 5. In order for an imputation model to be consistent with this model of interest, it has

to acknowledge the fact that the relation between X and Y is assumed to vary both systematically

as a function of W (i.e., due to the interaction effects) and unsystematically (i.e., due to random

slopes). However, the presence of such terms implies a complex joint distribution for the depen-

dent and explanatory variables which is difficult to emulate in conventional software for multi-

level MI (e.g., Kim, Sugar, & Belin, 2015). More advanced methods for accommodating the model

of interest when generating imputations are currently being developed, but these are not yet

available in standard software for multilevel MI (for further details, see the Discussion section).

For this reason, we focus on the procedures that are available in standard software for multilevel

MI, which often provide options for accommodating random slopes and CLIs, albeit to different

(and arguably imperfect) extents.

Joint modeling (JM). As mentioned earlier, modeling the joint distribution of the dependent and

explanatory variables in a general manner is not a straightforward endeavor if the model of interest

includes random slopes or interaction effects. For this reason, we used pan to implement the JM in a

manner that is similar to what we presented above. We assume that X and Y are treated as target

variables (i.e., on the left-hand side), whereas W is assumed to be completely observed and written

on the right-hand side of the model. Thus, the imputation model becomes

½Xij;Yij�T ¼ ½b0ðxÞ; b0ðyÞ�T þWj½bwðxÞ; bwðyÞ�T þ ½ujðxÞ; ujðyÞ�T þ ½eijðxÞ; eijðyÞ�T ; ð6Þ
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where ½bwðxÞ; bwðyÞ�T denotes the vector of regression coefficients from regressing X and Y on W , and

the remaining notation is as before. In this specification, the joint model includes possible relations

among the three variables at the group level as well as relations between X and Y at the individual and

the group level. However, the joint model includes only a random intercept for each target variable,

whereas the slope variance and the interaction effects in the analysis model are completely ignored. In

general, the JM approach may still provide reasonable estimates of the regression coefficients when the

substantive analysis model contains random slopes because the inclusion of random slopes does not

change the expected value of the estimates for the regression coefficients. However, when the sub-

stantive model also includes interaction effects, the integrity of its estimates may be compromised.

The FCS approach. To address missing data in multilevel models with random slopes, it has been

recommended that researchers specify conditional models that include varying slopes between pairs

of variables (Enders et al., 2016). In addition, product terms involving W can be introduced to

accommodate the CLI. If both random slopes and product terms are included, the two conditional

models become

Xij ¼ b0ðxÞ þ b1ðxÞðYij � �Y �jÞ þ b2ðxÞ �Y �j þ bwðxÞWj þ b1wyðxÞWjðYij � �Y �jÞ þ b2wyðxÞWj
�Y �j

þ u0jðxÞ þ u1jðxÞðYij � �Y �jÞ þ eijðxÞ
Yij ¼ b0ðyÞ þ b1ðyÞðXij � �X �jÞ þ b2ðyÞ �X �j þ bwðyÞWj þ b1xwðyÞWjðXij � �X �jÞ þ b2xwðyÞWj

�X �j
þ u0jðyÞ þ u1jðyÞðXij � �X �jÞ þ eijðyÞ;

ð7Þ

where u0jð�Þ and u1jð�Þ denote the random intercepts and slopes in the conditional models, and the

coefficients b1wyðxÞ, b1xwðyÞ, b2wyðxÞ, and b2xwðyÞ denote the interaction effects by which the within-

and between-group relations of X and Y change as a function of W .

There are two aspects worth noting. The first is related to the way in which random slopes are

handled in the conditional models. The imputation model for missing values in Y is identical to the

analysis model. Thus, imputing Y should be straightforward. However, previous research has shown

that missing values in the explanatory variable X pose a much greater challenge because “reversing”

the random slope model may produce biased estimates of the regression coefficients and the slope

variance in the analysis model (Gottfredson et al., 2016; Grund et al., 2016a; see also Enders et al.,

2016). This is not entirely surprising because the analysis model (Equation 5) and the imputation

model for missing X (Equation 7, first line) make different statements about the varying relation

between X and Y . In other words, although replacing u1jðXij � �X �jÞ in the analysis model by

u1jðxÞðYij � �Y �jÞ in the imputation model may serve as a “proxy” for the relation of interest, the two

statements are not equivalent.

The second aspect is related to the presence of nonlinear effects (i.e., interaction effects) in the

conditional models. At each iteration of the FCS algorithm, the product terms WjðXij � �X �jÞ and

WjðYij � �Y �jÞmust be “updated” to incorporate the most recent imputations of X and Y . The simplest

strategy for updating the products terms is to recalculate them after X and Y have been imputed. This

is commonly referred to as “passive imputation” (Royston, 2004; van Buuren, 2012). As an alter-

native, product terms may be regarded as “just another variable” (von Hippel, 2009). This strategy

replaces the passive imputation step with an imputation model for each product term (e.g., a

regression model). However, both strategies have been shown to yield biased parameter estimates

(e.g., Seaman, Bartlett, & White, 2012; Vink & van Buuren, 2013) because they do not correctly

reflect the complex joint distribution of the dependent and explanatory variables in the model when

the model of interest includes interaction effects (Kim et al., 2015). In the present study, we used

passive imputation because (a) it is easy to use and readily available in standard software and (b)

implementing “just another variable” is not straightforward with group-mean-centered data.3
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FIML. Similar to MI, analyzing the incomplete data with FIML can be difficult if the model of interest

includes random slopes and CLIs. As before, we focus on FIML estimation in the statistical software

Mplus. If missing data occur only on Y , estimating the model of interest in Mplus is straightforward

because the observed-data likelihood can be evaluated directly on the basis of the incomplete data.

However, if missing values occur on X , it is currently not possible to include X in the analysis model

in Mplus without dropping cases with missing X from the analysis (for a discussion, see also Shin &

Raudenbush, 2010).

Summary. In contrast to applications in the multilevel random intercept model, missing data pose a

greater challenge when the model of interest includes random slopes. Multilevel MI can be expected

to provide proper results when only the dependent variable Y contains missing data. However, if the

explanatory variable with a random slope, X , contains missing data, conducting MI is not straight-

forward. Specifically, the “reversed” imputation model for missing X contains only a proxy for the

relation of interest, and accommodating product terms (i.e., CLIs and group-level interactions) is

still an open area of research (see the Discussion section). As a result, neither JM nor FCS was

expected to provide perfect results.

Study 2: Random Slope Models

In this section, we present findings from a simulation study in which we compared different MI

procedures in the context of multilevel models with random slopes and CLIs. The model of interest

was the random coefficients model presented in Equation 5, and the data were also generated from

this model (see Appendix A). The parameters of the data-generating model were chosen in such a

way as to imply a given value for the ICCs of X and Y and a given “total” variance for the random

slope (i.e., Varðb1jÞ ¼ Varðg11Wj þ u1jÞ ¼ g2
11 þ t2

1). Missing data were generated as before

(MCAR and MAR on either X or Y ). A summary is presented in Table 1. We varied the number

of groups (k ¼ 50, 100, 200, 500), the number of individuals (n ¼ 5, 10), the size of the CLI (g11 ¼
0, .20), and the missing data mechanism. The effect of ðXij � �X �jÞ was held constant at .50 (g10) and

the effect of Wj at .35 (g02); the remaining effects were set to zero. Each condition was replicated

1,000 times. We applied the following procedures to each data set:

1. LD

2. single-level FCS, ignoring the multilevel structure and product terms (FCS-SL)

3. multilevel FCS, ignoring random slopes but including passive imputation of product terms

(FCS-CLI/no RS)

4. multilevel FCS including random slopes and passive imputation of product terms (Equation

7; FCS-CLI/RS)

5. FIML

The FIML estimation was conducted in Mplus as described above. Because FIML could not be used

to estimate the model in conditions with missing X , we included FIML only for conditions with missing

Y . The parameters of interest were the within-group regression coefficient of X (g10), the effect of W

(g02), the CLI (g11), and the slope variance (t2
1). For each condition, each procedure, and each parameter,

we calculated the bias, the RMSE, and the coverage rate of the 95% confidence interval as before.

Results. Our main findings are summarized in Table 3 and Figure 2. In presenting our results, we

focus on the MI procedures because FIML could be applied only in conditions with missing Y , and

the estimates were approximately unbiased in these conditions. For the remaining procedures, the

difference between cases with missing data in Y and X was substantial, and sample size continued to
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ĝ 1
1

�
2
.9

0
.0

6
9
3
.8

�
5
4
.5

0
.1

2
4
6
.5

�
1
6
.7

0
.0

6
9
2
.2

�
1
9
.5

0
.0

6
9
2
.4

�
2
1
.7

0
.0

6
9
0
.8

k
¼

5
0
0
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play an important role. When only the dependent variable Y was incomplete, FCS-CLI/RS provided

approximately unbiased estimates for the parameters of interest, with bias present for the slope

variance (t2
1) in smaller samples but tending toward zero as the samples grew larger (Figure 2). The

bias in smaller samples was quite large for the slope variance, especially when the samples consisted

of smaller groups (n ¼ 5). With larger groups (n ¼ 10), the bias was reduced by approximately half

(Figure 2).4 When the random slope was ignored (FCS-CLI/no RS), we obtained almost identical

estimates for the regression coefficients, but the slope variance was underestimated regardless of

sample size. When both the interaction effects and the random slopes were ignored (JM), the

estimates of the CLI were biased as well. Moreover, when the imputation model ignored the multi-

level structure altogether (FCS-SL), all regression coefficients were biased independent of sample

size. In conditions with no CLI (g11 ¼ 0), the performance of FCS-CLI/RS was the same, but the

bias in the slope variance was greatly reduced (see Footnote 4).

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

●

Figure 2. Estimated bias for the CLI (g11) and the slope variance (t2
1) in Study 2 for different numbers of

individuals (n) and groups (k), and different missing data mechanisms (MAR; Y * X and X * Y). LD ¼ listwise
deletion; FCS-SL ¼ single-level FCS; FCS-CLI/no RS ¼ multilevel FCS including only product terms;
FCS ¼ multilevel FCS including product terms and random slopes; JM ¼ multilevel JM.
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In these cases, both FCS-CLI/no RS and JM also provided approximately unbiased estimates of

the regression coefficients (see also Enders et al., 2016; Grund et al., 2016a). Finally, LD provided

approximately unbiased estimates of the slope variance, but the estimates of the regression coeffi-

cient for W (g02) were biased under MAR regardless of sample size. The results for the coverage of

the 95% confidence interval and the RMSE were in line with the bias. However, the coverage was

slightly too low under FCS-CLI/no RS and JM, illustrating that the confidence intervals were

slightly too narrow when the slope variance was omitted from the imputation model.

When missing values occurred in the explanatory variable X , no procedure provided unbiased

estimates of the CLI and the slope variance (see Table 3 and Figure 2). Even when the product terms

and random slopes were included in the model (FCS-CLI/RS), multilevel MI provided only biased

estimates of the CLI and the slope variance. Ignoring the slope variance (FCS-CLI/no RS) led to

slightly better estimates of the regression coefficients but increased the bias in the slope variance.

Ignoring both the interaction effects and the random slopes (JM) led to further bias in the CLI but

was otherwise comparable to FCS-CLI/no RS. On the other hand, single-level MI (FCS-SL) led to

strongly biased estimates of both the main and interaction effects as well as the slope variance. It is

interesting that LD provided the least biased estimates of the CLI and the slope variance in condi-

tions with small groups even under MAR. On the other hand, LD introduced bias into the other

estimates, particularly the main effect of W when the data were MAR. In conditions with no CLI

(g11 ¼ 0), FCS-CLI/RS still showed a slight downward bias in the regression coefficient of

ðXij � �X �jÞ and the slope variance but yielded otherwise unbiased results. Ignoring the slope var-

iance (FCS-CLI/no RS and JM) reduced the bias in the regression coefficients to essentially zero but

increased bias in the slope variance. Results for LD were similar to conditions with CLI.

The coverage of the 95% confidence interval and the RMSE were closely related to the bias in the

parameter estimates. For FCS-CLI/RS, the coverage was close to the nominal value of 95% for most

parameters, but the coverage of the regression coefficient of ðXij � �X �jÞ and the CLI dropped below

90% unless the sample was very small (k ¼ 50, n ¼ 5). As a result of reduced sample size, the

coverage under LD was slightly higher but also fell below 90% as the sample size increased. Similar

to before, the RMSE indicated a relative loss of efficiency under LD for estimates of the regression

coefficients of W and to a lesser extent ðXij � �X �jÞ. For example, the average RMSE for regression

coefficients of W were 13:8% larger under LD with missing Y as compared with FCS-CLI/RS and

38:7% larger with missing X . For the CLI, the RMSE was usually lowest under FCS-CLI/no RS and

FCS-CLI/RS in smaller samples (k � 100) and under LD in larger samples (k � 200). However,

these differences were very small: The average RMSE for the CLI under LD as compared with FCS-

CLI/RS was approximately equal with missing Y (< 1%) and only 3:5% larger with missing X .

Taken together, our results indicate that the FCS approach provides reliable estimates for the para-

meters of interest when missing values are restricted to Y and still reasonable (though imperfect)

estimates with missing values on X . Even though some parameter estimates obtained from FCS were

biased, they had better statistical properties overall than those of the competing methods. Ignoring the

slope variance sometimes reduced bias in the regression coefficients but resulted in confidence intervals

for these coefficients that were too narrow. LD provided the least biased estimates of the slope variance

and the CLI but introduced bias in other parameters and tended to be slightly less efficient than MI.

Categorical and Group-Level Missing Data

In the previous two simulation studies, the models of interest were simplified in two ways: (a) the

data were always continuous, thus not accounting for missing categorical data, and (b) data were

missing only at the individual level, thus not accounting for missing data in group-level variables.

Therefore, we conducted two smaller simulation studies that addressed these issues separately.
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Study 3a: Missing Categorical Data

Turning back to the random intercept model, researchers are often interested in estimating the

differences between groups of participants by including categorical variables in the model of

interest, be it to control for group differences (e.g., due to gender, education, etc.) or to assess the

effectiveness of interventions (e.g., treatment vs. control group). Especially in the former case,

categorical variables may contain missing data. Here, we briefly discuss two procedures for multi-

level MI—one using JM, one using FCS—that address missing data in multilevel categorical vari-

ables. We also discuss FIML estimation, and we evaluate their performance in a simulation study.

Here, the model of interest is a multilevel random intercept model with two explanatory variables

at the individual level, one continuous and one binary

Yij ¼ g00 þ g10Xij þ g20Dij þ u0j þ eij; ð8Þ

where D is a dummy-coded binary variable that takes on values for each individual i in group j. This

model was also used to generate the data (see Appendix A). To ensure that D had a multilevel structure,

we simulated a latent background variable D� with a given value of its ICC. Binary values were obtained

by setting Dij ¼ 1 if D�ij > 0, and 0 otherwise, resulting in a 50% prevalence of either category. Missing

data were induced in D as before (MCAR and MAR, based on Y ). In addition, we varied the number of

individuals (n ¼ 5, 10) and the number of groups (k ¼ 50, 100, 200, 500). The remaining parameters

were held constant (see Table 1). For comparison, we included LD and single-level FCS as before.

Joint modeling (JM). Quite general procedures that use the JM approach are available for categorical

data (e.g., Goldstein, Carpenter, Kenward, & Levin, 2009). These procedures have been implemen-

ted recently in the jomo package in R (Quartagno & Carpenter, 2016), which allows continuous and

categorical variables to be modeled simultaneously, where a categorical variable is represented by

c� 1 underlying latent continuous variables (where c is the number of categories). For our model of

interest involving three individual-level variables, the joint model reads

½Xij; Yij;D
�
ij�

T ¼ ½b0ðxÞ; b0ðyÞ; b0ðd�Þ�T þ ½ujðxÞ; ujðyÞ; ujðd�Þ�T þ ½eijðxÞ; eijðyÞ; eijðd�Þ�T ; ð9Þ

where eijðd�Þ is constrained to have unit variance to identify the model. For missing data in D, the

model is essentially a generalized linear mixed-effects model conditioning on X and Y (see Car-

penter & Kenward, 2013; Goldstein et al., 2009). For dichotomous variables, equivalent procedures

are available in the statistical software Mplus. However, for categorical variables with multiple

categories, the procedures in Mplus differ from the approach taken in jomo.5

The FCS approach. Imputations for D may also be generated by directly conditioning on X and Y

using FCS. Similar to the joint model, imputations may be generated from a generalized linear

mixed-effects model (e.g., with a probit or logit link function)

D�ij ¼ b0ðd�Þ þ b1ðd�ÞðX � �X �jÞ þ b2ðd�Þ �X �j þ b3ðd�ÞðYij � �Y �jÞ þ b4ðd�Þ �Y �j
þ ujðd�Þ þ eijðd�Þ;

ð10Þ

where eijðd�Þ is constrained in a manner similar to what is done in the JM. Unfortunately, mice

currently allows for MI of categorical variables only in single-level models. Procedures for multi-

level data have been proposed by Snijders & Bosker (2012) and Zinn (2013). The procedure used

here is essentially a combination of the two and is implemented in the R package miceadds
(Robitzsch, Grund, & Henke, 2016).

FIML. As an alternative to MI, the model can also be estimated directly by applying FIML. However,

because Mplus assumes that the variables in the multilevel model are multivariate normal, it was not
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straightforward to include D as a multilevel categorical variable. Instead, we treated D as a multi-

level continuous normal variable to estimate the model with FIML.

Results. Our main findings are summarized in Table 4. We restricted our reporting to the overall

effects of X (g10) and D (g20) because we felt that they were the most important parameters for

judging the performance of each method. Consistent with our expectations, both FCS-ML and JM

provided approximately unbiased estimates of the two regression coefficients, whereas the other

procedures each yielded biased estimates in some simulated conditions. The coverage was close to

the nominal value of 95%, and the RMSE tended to be lowest under FCS-ML and JM. By contrast,

LD yielded biased estimates of the two parameters. FCS-SL and FIML introduced bias in the

regression coefficient of D (g20) in conditions with large ICCs, although the RMSE and coverage

remained acceptable under FIML. We concluded that both multilevel JM and FCS are suitable for

MI of multilevel categorical data. Note, however, that we limited our attention to missing binary

data. The FCS procedure can be extended to variables with multiple ordered or unordered categories.

Study 3b: Group-Level Missing Data

The ideal case in which missing data occur only on the lowest level of multilevel data sets (i.e., on the

level of individuals) rarely holds in practice. Moreover, data that are missing at the group level can be

particularly cumbersome because they can force researchers to discard complete records at lower

levels of the data. For example, consider a study in which employees were asked to rate the frequency

of benevolent behavior engaged in by supervisors, and supervisors were asked the same question about

their employees. If both variables were to be used as explanatory variables in some model of interest,

missing data in supervisor ratings would lead one to discard employees’ ratings as well, resulting in a

severe loss of information. Surprisingly, the methodological literature has focused so far on ad hoc

procedures, for example, separate imputation of individual- and group-level variables (Gibson &

Olejnik, 2003) or “flat file” imputation using single-level MI (Cheung, 2007; for an overview, see

Hox et al., 2016; van Buuren, 2011). However, recent advances in statistical software have greatly

improved our ability to treat group-level missing data. Here, we briefly discuss two procedures—one

using JM, one using FCS—that can be used to impute missing data at the group level.

Here, the model of interest was a multilevel random intercept model with explanatory variables at

the individual (e.g., employee ratings) and the group level (e.g., supervisor ratings)

Yij ¼ g00 þ g10ðXij � �X �jÞ þ g01
�X �j þ g02Wj þ u0j þ eij: ð11Þ

Furthermore, we assumed that W was partially missing. The critical point in this model is that W is

measured at the group level; that is, it does not vary across individuals in the same group. Thus,

information located at the group level, including the information provided by individual-level variables,

may be used to predict missing scores in W . For comparison, we also included LD and single-level FCS.

Joint modeling (JM). Computationally, the imputation of missing data at the group level is not much

different from imputation at the individual level. Specifically, imputations for group-level missing

data can be obtained by conditioning on observed group-level variables and on the between-group

components of individual-level variables by employing the same general paradigm that is already

employed for multilevel MI (for details, see Carpenter & Kenward, 2013; Goldstein et al., 2009).

Similar to before, the joint model for the three variables of interest can be written as

½Xij; Yij;Wj�T ¼ ½b0ðxÞ;b0ðyÞ; b0ðwÞ�T þ ½ujðxÞ; ujðyÞ; ujðwÞ�T þ ½eijðxÞ; eijðyÞ; 0�T : ð12Þ

where ujðwÞ is the residual of W in group j. For missing values in W , imputations are generated in the

present case by conditioning on ½ujðxÞ; ujðyÞ� at each iteration of the sampling algorithm (see Carpenter
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& Kenward, 2013), thus incorporating the group-level information supplied by X and Y in the

prediction of missing W . The joint model can be implemented, for example, with the jomo package

in R or in the statistical software Mplus.

The FCS approach. Instead of conditioning on the random effects of individual-level variables as in

the JM approach, group-level variables can be imputed by applying an FCS approach based on the

observed group means of these variables. Specifically, for missing values in W , missing data may be

imputed by using the linear regression

Wj ¼ b0ðwÞ þ b1ðwÞ �X �j þ b2ðwÞ �Y �j þ ujðwÞ; ð13Þ

where ujðwÞ is the residual of W given �X �j and �Y �j. If values are missing at both levels, then the FCS

algorithm iterates back and forth between the individual- and group-level equations (Equations 4 and

13; see also Gelman & Hill, 2006; Yucel, 2008). As in the multilevel random intercept model, it can

be argued that the FCS and the JM approach imply similar covariance structures that can be used

interchangeably (see Study 1; Carpenter & Kenward, 2013).

FIML. Missing values in W can also be addressed using FIML. Because W is directly measured

at the group-level, missing data in W can be addressed simply by specifying W as a latent variable

in Mplus.

Results. Our main findings are summarized in Table 5. We restricted our reporting to the group-level

effects of X (g01) and W (g02) because we considered them to be the most important in this situation.

FCS-ML, JM, and FIML all provided approximately unbiased estimates of the group-level effects in

the model of interest. With a smaller number of groups and individuals within each group, FCS-ML

and JM exhibited a small negative bias, which tended toward zero in larger samples. By contrast, LD

and FCS-SL yielded only biased estimates of these parameters regardless of sample size. The

coverage of the 95% confidence interval was close to the nominal value of 95% for FCS-ML,

JM, and FIML, and the RMSE was lowest for these procedures. We concluded that multilevel

JM and FCS as well as FIML are suitable methods for dealing with group-level missing data.

Recommendations for Practice

There exist several approaches to the treatment of missing data in multilevel designs. As a result,

researchers are faced with a multitude of options, several but not all of which may be suitable for a

given task. In order to guide researchers in picking a suitable procedure, we provide a detailed list of

recommendations in Table 6. This table covers different applications of multilevel models, including

applications with random intercepts, random slopes, different variable types, and interaction effects.

For each application, we distinguish between a general case with arbitrary patterns of missing data

and a number of cases with missing data on specific variables (e.g., categorical and group-level

variables). For each case, we list the recommended and not-recommended procedures as well as the

likely consequences of choosing the latter.

Finally, we list statistical software that implements one or more of the recommended procedures,

and we provide reference to one of the step-by-step examples in Appendix B, which illustrate the use

of multilevel MI for each application in the statistical software R (for a general introduction to

multilevel MI, see Enders et al., 2016; Grund et al., 2016b).

For applications in the multilevel random intercept model, multilevel MI—using either JM or

FCS—provides an effective and general method for dealing with missing data. Procedures for

multilevel JM, for example, are implemented in the software packages pan and jomo for the

statistical software R as well as Mplus, MLwiN (Rasbash, Charlton, Browne, Healy, & Cameron,
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2015), REALCOM (Carpenter, Goldstein, & Kenward, 2011), and the SAS macro MMI_IMPUTE
(Mistler, 2013); multilevel FCS is implemented in the R package mice as well as Mplus and Blimp

(Keller & Enders, 2016). When treating missing data in categorical or group-level variables,

researchers should choose implementations of multilevel MI that support these types of variables

(e.g., jomo, Mplus and REALCOM for multilevel JM; mice, Mplus, and Blimp for multilevel FCS).

FIML may be an option if missing data are restricted to the dependent variable in the analysis or if

the analysis model includes latent instead of observed (i.e., manifest) group means to estimate

group-level effects (Grund et al., in press; Lüdtke et al., 2008). By contrast, single-level MI should

be avoided unless only a few cases contain missing data (e.g., less than 5%) and the ICC of the

variables is relatively small (e.g., less than .10). Similarly, although LD provided reasonable esti-

mates of model parameters (e.g., the CLI), we do not recommend that it be adopted in practice. This

is because LD provides generally unbiased results only under MCAR, whereas its performance

under MAR depends on the “strength” of missing data mechanism (i.e., the degree to which the

data loss is systematic; see also Newman, 2014). This is problematic, because the missing data

mechanism can never be ascertained from the data alone (e.g., Allison, 2001; Enders, 2010). For that

reason, LD may provide an alternative if missing data are guaranteed to be MCAR, for example, in

“planned missing data designs” (e.g., Graham, Taylor, Olchowski, & Cumsille, 2006). However,

under more general conditions, we recommend against using LD. For applications involving random

slopes or interaction effects, it is more difficult to provide general recommendations at the present time.

Software for multilevel FCS may be used to treat missing data in such models if it supports the

specification of random slope imputation models as well as passive imputation steps for the product

terms (e.g., mice). However, researchers should bear in mind that multilevel FCS with passive imputa-

tion is not a definite solution to the problem of missing data in such applications. Instead, model-based

procedures may be considered in the future (for a brief exposition, see the Discussion section).

Apart from the procedure selected for the treatment of missing data, the performance of MI also

depends on a few general factors. For example, researchers should try to include auxiliary variables

in the imputation model, that is, variables that are related to either the occurrence of missing data or

the variables with missing data themselves (e.g., Collins et al., 2001; Graham, 2009; Schafer &

Graham, 2002). When more information can be included from auxiliary variables, then missing

values can be inferred from the observed data with greater accuracy (for a discussion about the use of

auxiliary variables under FIML, see Enders, 2008; Graham, 2003). In addition, the quality of

estimates and inferences obtained from MI can often be improved by generating a larger number

of imputations (Bodner, 2008; Graham, Olchowski, & Gilreath, 2007). In our experience, generating

20 imputations is sufficient for most applications in which the primary goal is to estimate the model

parameters, but as many as 100 or more imputations can be useful if the analyses involve testing

more elaborate statistical hypotheses (Bodner, 2008; see also Grund et al., 2016b).

Discussion

In the present article, we outlined several procedures for MI of multilevel missing data, each

intended to accommodate typical research questions in organizational psychology and other areas

in the social sciences. Through several smaller simulation studies, we tried to provide a broad

overview of multilevel MI. We demonstrated that the current implementations of multilevel MI are

able to accommodate quite general research questions and multilevel designs. For example, several

procedures for multilevel MI, using either the JM or the FCS approach, were suitable in the broad

context of random intercept models. In such a context, missing data can be treated fairly accurately

and in a very general manner even when missing data occur at different levels of the sample or in

categorical and continuous variables simultaneously.
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However, we also pointed out applications in which the current implementations of multilevel MI

do not correctly accommodate the model of interest. Specifically, it is still challenging to implement

multilevel MI for multilevel models with random slopes or interaction effects when the explanatory

variables contain missing data (see also Kim et al., 2015). Even though multilevel FCS appears to be

slightly more flexible than multilevel JM in accommodating the substantive model, both approaches

ultimately contain limitations due to the ways in which they are currently implemented in statistical

software. To alleviate this problem, it has been recommended that the substantive analysis model be

taken into account when conducting MI, thus ensuring that imputations are generated in a manner

consistent with the model of interest (Bartlett, Seaman, White, & Carpenter, 2015). With this

procedure, Bartlett et al. (2015) demonstrated that the bias associated with nonlinear and interaction

effects in single-level regression models can be greatly reduced (see also Goldstein, Carpenter, &

Browne, 2014). Unfortunately, this approach is currently not available in standard software for

multilevel MI.

As an alternative to MI, multilevel models can be estimated directly from the incomplete data by

applying model-based procedures such as FIML (e.g., in Mplus). Even though current implementa-

tions of FIML are still quite general and easy to use, it can be challenging to estimate multilevel

models with missing values in explanatory variables, for example, when the model of interest uses

observed group means to incorporate group-level effects or it includes categorical variables, random

slopes, or interaction effects (see also Shin & Raudenbush, 2010). The challenges of FIML are

ultimately similar to those of MI, and similar proposals have been made with respect to how one

might overcome these challenges. For example, Stubbendick & Ibrahim (2003) proposed a factor-

ization approach to FIML estimation of multilevel models with missing data in explanatory vari-

ables (see also Wu, 2010). Unfortunately, this approach is also currently not available in standard

software. As an alternative, the model-based treatment of missing data can be implemented in a

Bayesian analysis approach (Erler et al., 2016; see also Goldstein et al., 2014; Zhang & Wang,

2016). However, the Bayesian approach requires specialized software for Bayesian analyses such as

WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) or JAGS (Plummer, 2016), and such

software can be challenging to use in practice (e.g., syntax-based model specification, selection

of priors and starting values). Our own experiences indicate that these procedures can provide

unbiased estimates with good coverage properties even in multilevel models with random slopes

and CLIs. For interested readers, we provide an example of a model-based procedure in the supple-

mental online materials. This example includes a multilevel model with random slopes and cross-

and group-level interactions with missing data in explanatory variables (i.e., the conditions simu-

lated in Study 2). The model syntax for the JAGS software is provided. However, before they can be

widely adopted, we recommend that these procedures be subjected to further research and imple-

mented in standard software. Additional software packages that implement FIML for multilevel

models are xxM (Mehta, 2013) and Latent GOLD (Vermunt & Magidson, 2013).

Despite limitations in complex multilevel analyses, multilevel MI provides a more reliable and

efficient approach to the treatment of missing data in comparison with simpler methods (e.g., single-

level MI). As an alternative, it has been suggested that the multilevel structure might be expressed by

including dummy-indicator variables in a single-level imputation model (Drechsler, 2015).

Although this strategy substantially increases the complexity of the imputation model when the

model of interest includes random slopes or interaction effects, it may be interesting to investigate its

performance more thoroughly under such conditions (see also Andridge, 2011; Enders et al., 2016).

In the context of multilevel models with random slopes, it has also been recommended that single-

level MI be performed separately within each group (Graham, 2009). However, this strategy has

been shown to be inefficient (i.e., low power) and should be avoided (Taljaard et al., 2008)

Every simulation study has its limitations, and owing to their smaller frame, the simulation

studies presented here are no exception. In each study, we focused on varying the sample sizes
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rather than creating a diverse pattern of possible effects and effect sizes. However, this came at the

price of choosing constant values for many of the population parameters. Therefore, the results

should not be generalized to arbitrary patterns of effects. On the other hand, it is nearly impossible

to address the diversity of possible research designs in a single study. Future studies should

investigate the performance of multilevel MI in more specialized applications, including settings

with very small samples at the individual level (e.g., dyadic data) or the group level (e.g., research

in large organizations), a larger variety of patterns of effects and missing data mechanisms (see

Newman, 2009), low ICCs, or a large number of continuous and categorical variables (see Ver-

munt, 2003; Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008). Further topics for future

research also include the application of multilevel MI in longitudinal data, which share many but

not not all of the features of cross-sectional data, and in models with additional levels of hierarchy

(see Yucel, 2008). In principle, however, these models can be addressed with existing statistical

software.

Summing up, we believe that MI is already a powerful tool for treating missing data in multilevel

research. Several procedures that make MI both generally applicable and easy to use have become

available. In the present article, we attempted to provide guidance on the application of multilevel

MI in research practice by providing both simulation results and recommendations for different

applications of multilevel models. Our findings suggest natural directions for future research. For

example, even though multilevel MI yielded reliable results in most applications, this was not the

case in multilevel models with random slopes or interaction effects when data were missing in

explanatory variables. Several procedures that might alleviate these problems have been proposed,

but before these procedures can widely be adopted in practice, they must be evaluated more

thoroughly in the context of multilevel designs, and they must be implemented in standard software.

In this spirit, we hope that the present study and the materials provided with it will stimulate further

research in this area and contribute to the regular use of MI in research practice.

Appendix A

Simulation design

In all simulation studies, the data were generated on the basis of the following model

Yij ¼ g10ðXij � �X �jÞ þ g01
�X �j þ g02Wj þ g11WjðXij � �X �jÞ þ u0j þ u1jðXij � �X �jÞ þ eij; ðA1Þ

where u0j and u1j followed a multivariate normal distribution with mean zero and covariance matrix

T ¼ t2
0 t01

t01 t2
1

� �
, and eij was normally distributed with mean zero and variance s2. All variables were

assumed to be standardized with mean zero and unit variance.

The data were generated in several steps. First, we simulated the between- and within-group

components of X , which followed a normal distribution with mean zero and variances t2
x and s2

x ,

respectively, which were determined by fixing the intraclass correlation (ICC) of X (rI ;X ). Then, we

applied group-mean centering in order to obtain �X �j and ðXij � �X �jÞ. In the next step, we generated

Wj from a linear regression on �X �j according to a correlation coefficient r�xw. The regression

coefficient was given by r�xw=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

x þ s2
x=n

p
and the residual variance by ð1� r2

�xwÞ. Finally, Y was

simulated from Equation A1. The residual variance was set to

s2 ¼ 1� g2
01 t2

x þ
s2

x

n

� �
� g2

02 � 2g01g02r�xw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

x þ
s2

x

n

r
� ðg2

10 þ g2
11 þ t2

1Þ s2
x �

s2
x

n

� �
� t2

0:

ðA2Þ
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The parameters of the simulations were chosen in such a way as to imply certain values for the ICC

of Y (see also Aguinis & Culpepper, 2015, for a very general decomposition of variance). For this

purpose, the ICC was calculated as follows

rI ;Y ¼ g2
01 t2

x þ
s2

x

n

� �
þ g2

02 þ 2g02 g01 � g01

s2
x=n

t2
x þ s2

x=n

� �
r�xw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

x þ
s2

x

n

r
� ðg2

10 þ g2
11 þ t2

1Þ
s2

x

n
þ t2

0:

ðA3Þ

Missing data were simulated according to a missing data mechanism T*P, where T is a target and P

is a predictor variable. For person i in group j, we simulated a latent response propensity

Rij ¼ l0 þ l1Pij þ rij ðA4Þ

where R denotes T ’s response propensity, l0 is a quantile of the standard normal distribution

according to a missing data probability, and l1 is the weight with which P drives the missing data

mechanism. The residuals rij were drawn from a normal distribution with mean zero and variance

1� l2
1. A value Tij was deleted if Rij > 0. To generate MCAR and MAR data, we set l1 ¼ 0 and :50,

respectively. In Study 3b, the missing data mechanism was based on the group means.

In Study 3a, which included a dichotomous variable D, we generated the data as follows: First, we

simulated within- and between-group components for a latent background variable D� according to the

ICC of D (rI ;D). We set Dij to one if D�ij > 0 and zero otherwise. Then, X was simulated conditional on

D, and Y was simulated conditional on D and X . Because the within- and between-group components

of D could not be partitioned in the same way as for continuous variables, we generated X and Y by

specifying residual ICCs for both variables (rI ;X jD and rI ;Y jDX ). These were chosen in such a way that

they implied marginal ICCs for both variables that were similar to those in Studies 1, 2, and 3b.

Appendix B

Step-by-Step Examples for Multilevel MI

Here, we provide examples for multilevel MI in the statistical software R, using the packages jomo
(JM), mice (FCS), and miceadds (FCS). We make use of the justice data set included in the

mitml package, which contains simulated data from 1,400 employees organized in 200 organiza-

tions (id) including employees’ sex (sex), their organizational satisfaction (sat), their orientation

toward procedural justice (jor), and scores for justice climate at the level of organizations (jcl).

library(jomo)       # load "jomo" multilevel JM 
library(mice)       # load "mice" for multilevel FCS 
library(miceadds)   # load "miceadds" for multilevel FCS 

library(mitml)                   # load "mitml" 
data(justice, package="mitml")   # load "justice" data set 

The structure of the data set is as follows.

# id   sex   sat   jor    jcl 
# 1 female 4.783 0.886 -0.336 
# 1   male 5.392 0.205 -0.336 
# 1   male 6.696 0.328 -0.336 

All variables contain missing data. For each of the following examples, we focus on one model of

interest. For the purpose of illustration, we use a subset of the data in each example in which missing

data occur only in the variables included in the model of interest. In practice, these examples can

(and should) be combined to treat missing data for all variables simultaneously.
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Example 1.1: Random Intercept Model

In this example, we demonstrate multilevel MI in a multilevel random intercept model with

only continuous variables. Assume a researcher is interested in estimating the following

model:

SATij ¼ g00 þ g10ðJORij � JOR�jÞ þ g01JOR�j þ u0j þ eij: ðB1Þ

Either the JM or the FCS approach can be used in this case. In order to set aside the treat-

ment of missing data in categorical and group-level variables (see Examples 1.2 and 1.3), the

data set is reduced in such a way that only the variables in the model of interest require

imputation.

ex1.1 <- subset(justice, !is.na(sex) & !is.na(jcl)) 

Option 1: Multilevel FCS. In the FCS approach, it is necessary to specify the imputation model for each

variable as well as the predictor variables for each model. Using mice, the imputation model is

specified by defining an imputation method and predictor variables for each target variable with

missing data. The imputation methods are specified in a character vector (impMethod). Here, we

assign a two-level model to each variable with missing data.

# set up imputation methods 
impMethod <- character(ncol(ex1.1))   # create empty vector for 
names(impMethod) <- colnames(ex1.1)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"   # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"   # use '2l.pan' for 'jor' (two-level normal) 

The predictors in each model are then defined in the predictor matrix (predMatrix), where each

line corresponds to one target variable, and integer values denote the relations between the target and

predictor variables.

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex1.1), ncol(ex1.1))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.1)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1)   # -2 = cluster variable 
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1)   # 1 = overall effect 
                                                                 # 3 = overall + group-level effect 

The imputation is then carried out by issuing the following command.

imp <- mice::mice(data=ex1.1, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix) 

Option 2: Multilevel JM. Because the model of interest is a multilevel random intercept model, all

variables (including auxiliary variables) can be treated as target variables in the JM approach. In the

mitml package, imputation models can be specified as a list of two model formulas, pertaining to

individual- and group-level variables, respectively (for an alternative model specification similar to

FCS, see the package documentation).

fml <- list( sat + jor + sex ~ 1 + (1|id),   # level-1 targets = sat + jor + sex (no predictors) 
             jcl ~ 1 )                       # level-2 targets = jcl (no predictors) 

The imputation is then carried out by issuing the following command.

imp <- mitml::jomoImpute(data=ex1.1, formula=fml, n.burn=5000, n.iter=500, m=20) 
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Example 1.2: Random Intercept Model With Categorical Variables

In this example, we demonstrate multilevel MI with a mix of continuous and categorical variables.

Assume a researcher us interested in the following model

SATij ¼ g00 þ g10JORij þ g20Sexij þ u0j þ eij: ðB2Þ

Either the JM or the FCS approach can be used in this case. As before, the data set is reduced in such

a way that only these variables require imputation.

ex1.2 <- subset(justice, !is.na(jcl)) 

Option 1: Multilevel FCS. The specification of the FCS approach is similar to the previous example but

now includes a logistic two-level model for the categorical target variable (sex).

# set up imputation methods 
impMethod <- character(ncol(ex1.2))   # create empty vector for 
names(impMethod) <- colnames(ex1.2)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"      # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"      # use '2l.pan' for 'jor' (two-level normal) 
impMethod[ "sex" ] <- "2l.binary"   # use '2l.binary' for 'sex' (two-level logistic) 

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex1.2), ncol(ex1.2))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.2)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1)   # -2 = cluster variable 
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1)   # 1 = overall effect 
predMatrix[ "sex" , c("id","sat","jor","jcl") ] <- c(-2,3,3,1)   # 3 = overall + group-level effect 

The imputation is then run as follows. Note that categorical variables must be converted into a

numeric data type beforehand in order to be imputed using mice.

# convert "sex" to dummy variable 
ex1.2 <- within(ex1.2, sex <- as.integer(sex)-1) 

imp <- mice::mice(data=ex1.2, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix) 

Option 2: Multilevel JM. The specification of the JM approach is identical to the previous

example, treating all variables (including auxiliary variables) as target variables in the

imputation model.

fml <- list( sat + jor + sex ~ 1 + (1|id),   # level-1 targets = sat + jor + sex (no predictors) 
             jcl ~ 1 )                       # level-2 targets = jcl (no predictors) 

The imputation is then carried out by issuing the following command. Not that, in contrast to mice,

jomo requires that categorical variables are formatted as factor variables in R, as is the case in the

original data set.

imp <- mitml::jomoImpute(data=ex1.2, formula=fml, n.burn=5000, n.iter=500, m=20) 

Example 1.3: Random Intercept Model With Group-Level Variables

In this example, we demonstrate multilevel MI with explanatory variables at both the individual and

the group level. Assume a researcher is interested in the following model

SATij ¼ g00 þ g10ðJORij � JOR�jÞ þ g01JOR�j þ g02JCLj þ u0j þ eij: ðB3Þ
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Either the JM or the FCS approach can be used in this case. As before, the data set is reduced in such

a way that only these variables require imputation.

ex1.3 <- subset(justice, !is.na(sex)) 

Option 1: Multilevel FCS. The specification of the FCS approach is similar to the previous example

but now includes a group-level regression model for the target variable at the group level

(jcl).

# set up imputation methods 
impMethod <- character(ncol(ex1.3))   # create empty vector for 
names(impMethod) <- colnames(ex1.3)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"        # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"        # use '2l.pan' for 'jor' (two-level normal) 
impMethod[ "jcl" ] <- "2lonly.norm"   # use '2lonly.norm' for 'jcl' (group-level regression) 

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex1.3), ncol(ex1.3))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.3)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,3,1)   # -2 = cluster variable 
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,3,1)   # 1 = overall effect 
predMatrix[ "jcl" , c("id","sex","sat","jor") ] <- c(-2,1,1,1)   # 3 = overall + group-level effect 

The imputation is then carried out by issuing the following command.

imp <- mice::mice(data=ex1.3, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix) 

Option 2: Multilevel JM. The specification of the JM approach is identical to the previous example,

treating all variables (including auxiliary variables) as target variables in the imputation model.

fml <- list( sat + jor + sex ~ 1 + (1|id),   # level-1 targets = sat + jor + sex (no predictors) 
             jcl ~ 1 )                       # level-2 targets = jcl (no predictors) 

The imputation is then carried out by issuing the following command.

imp <- mitml::jomoImpute(data=ex1.3, formula=fml, n.burn=5000, n.iter=500, m=20) 

Example 1.4: Random Intercept Model With Interaction Effects

In this example, we demonstrate multilevel MI for a multilevel random intercept model with two

explanatory variables and an interaction effect. Assume a researcher is interested in the following

model:

SATij ¼ g00 þ g10ðJORij � JOR�jÞ þ g20Sexij þ g30SexijðJORij � JOR�jÞ þ g01JOR�j
þu0j þ eij:

ðB4Þ

In order to include the interaction effect in the imputation model, we make use of passive imputation

steps in the FCS approach. As before, the data set is reduced in such a way that only these variables

require imputation.

ex1.4 <- subset(justice, !is.na(jcl)) 

To define passive steps, new variables must be created for the components of organizational satis-

faction (sat) and justice orientation (jor) and for the product terms that allow relations between
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individual-level organizational satisfaction (sat) and justice orientation (jor) to vary by sex (sex)

and vice versa.

ex1.4 <- within(ex1.4,{ 
  sex <- as.integer(sex)-1   # recode 'sex' as a dummy variable 
  sat.GRP <- sat.IND <- NA   # passive variables for components of 'sat' 
  jor.GRP <- jor.IND <- NA   # passive variables for components of 'jor' 
  sat.IND_sex <- NA          # passive variable for interaction of 'sat' and 'sex' 
  jor.IND_sex <- NA          # passive variable for interaction of 'jor' and 'sex' 
  sat.IND_jor.IND <- NA      # passive variable for interaction of 'sat' and 'jor' 
}) 

The specification of the imputation methods proceeds in a similar manner as before. In addition,

passive steps are defined for the components of organizational satisfaction (sat) and justice orienta-

tion (jor) as well as for the product terms by employing the *I() identity function.

# set up imputation methods 
impMethod <- character(ncol(ex1.4))   # create empty vector for 
names(impMethod) <- colnames(ex1.4)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"      # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"      # use '2l.pan' for 'jor' (two-level normal) 
impMethod[ "sex" ] <- "2l.binary"   # use '2l.binary' for 'sex' (two-level logistic) 

impMethod[ "sat.GRP" ] <- "2l.groupmean"      # passive step for updating the group means 
impMethod[ "jor.GRP" ] <- "2l.groupmean"      # means and within-group deviations of 'sat' 
impMethod[ "sat.IND" ] <- "~I(sat-sat.GRP)"   # and 'jor' 
impMethod[ "jor.IND" ] <- "~I(jor-jor.GRP)" 

impMethod[ "sat.IND_sex" ] <- "~I(sat.IND*sex)"           # passive steps for updating the 
impMethod[ "jor.IND_sex" ] <- "~I(jor.IND*sex)"           # product terms involving 'sat', 
impMethod[ "sat.IND_jor.IND" ] <- "~I(sat.IND*jor.IND)"   # 'jor', and 'sex' 

The predictors for each model are specified as before. However, two additional entries that allow the

group means to be updated are added.

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex1.4), ncol(ex1.4))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex1.4)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat.GRP" , c("id","sat") ] <- c(-2,1)   # -2 = cluster variable 
predMatrix[ "jor.GRP" , c("id","jor") ] <- c(-2,1)   # 1 = variable to be aggregated 

predMatrix[ "sat" , c("id","sex","jor","jcl","jor.IND_sex") ] <- c(-2,1,3,1,1) 
predMatrix[ "jor" , c("id","sex","sat","jcl","sat.IND_sex") ] <- c(-2,1,3,1,1) 
predMatrix[ "sex" , c("id","sat","jor","jcl","sat.IND_jor.IND") ] <- c(-2,3,3,1,1) 

Finally, the imputation is carried out by issuing the following command. In addition, we specify a

visit sequence (visitSeq), which defines the order in which the variables are to be imputed and the

passive steps are to be carried out. Passive steps are updated after obtaining a new imputation to the

extents to which they are needed in subsequent imputation steps.

# set up visit sequence 
visitSeq <- c( 
  "sat","sat.GRP","sat.IND","sat.IND_sex",       # impute 'sat', then update terms for 'jor' 
  "jor","jor.GRP","jor.IND","sat.IND_jor.IND",   # impute 'jor', then update terms for 'sex' 
  "sex","jor.IND_sex"                            # impute 'sex', then update terms for 'sat' 
) 
visitSeq <- match(visitSeq, colnames(ex1.4)) 

imp <- mice::mice(data=ex1.4, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix, allow.na=TRUE) 
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Example 2.1: Random Slope Model

In this example, we demonstrate multilevel MI for a multilevel model with random slopes. Assume a

researcher is interested in the following model:

SATij ¼ g00 þ g10ðJORij � JOR�jÞ þ g01JOR�j þ u0j þ u1jðJORij � JOR�jÞ þ eij: ðB5Þ

To accommodate the fact that the individual-level relation of organizational satisfaction (sat)

and justice orientation (jor) varies across groups, the FCS approach will be used. As before,

the data set is reduced in such a way that only the variables in the model of interest require

imputation.

ex2.1 <- subset(justice, !is.na(sex) & !is.na(jcl)) 

The specification of the FCS approach is very similar to Example 1.1 but now includes a random

slope in the imputation model for both organizational satisfaction (sat) and justice orientation

(jor), which is denoted by the number 4 in the predictor matrix.

# set up imputation methods 
impMethod <- character(ncol(ex2.1))   # create empty vector for 
names(impMethod) <- colnames(ex2.1)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"   # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"   # use '2l.pan' for 'jor' (two-level normal) 

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex2.1), ncol(ex2.1))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex2.1)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat" , c("id","sex","jor","jcl") ] <- c(-2,3,4,1)   # 4 = individual-level (random) 
predMatrix[ "jor" , c("id","sex","sat","jcl") ] <- c(-2,3,4,1)   # and group-level (fixed) effect 
                                                                 # ... otherwise as above 

The imputation is then carried out by issuing the following command.

imp <- mice::mice(data=ex2.1, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix) 

Example 2.2: Random Slope Model With Interaction Effects

In this example, we demonstrate multilevel MI with two explanatory variables, one at the individual

and one at the group level, including a random slope and interaction effects. Assume a researcher is

interested in the following model

SATij ¼ g00 þ g10ðJORij � JOR�jÞ þ g01JOR�j þ g02JCLj þ g11ðJORij � JOR�jÞJCLj

þ g03JOR�jJCLj þ u0j þ u1jðJORij � JOR�jÞ þ eij:
ðB6Þ

In order to include the random slopes and the interaction effects in the imputation model, we make

use of passive imputation steps in the FCS approach. As before, the data set is reduced in such a way

that only these variables require imputation.

ex2.2 <- subset(justice, !is.na(sex)) 

To define passive steps, new variables must be created for the components of organizational satis-

faction (sat) and justice orientation (jor) as well as for the product terms at the individual and the

group level.
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ex2.2 <- within(ex2.2,{ 
  sat.GRP <- sat.IND <- NA   # passive variables for components of 'sat' 
  jor.GRP <- jor.IND <- NA   # ... for components of 'jor' 
  sat.IND_jcl <- NA          # ... for individual-level interaction of 'sat' and 'jcl' 
  sat.GRP_jcl <- NA          # ... for group-level interaction of 'sat' and 'jcl' 
  jor.IND_jcl <- NA          # ... for individual-level interaction of 'jor' and 'jcl' 
  jor.GRP_jcl <- NA          # ... for group-level interaction of 'jor' and 'jcl' 
  sat.GRP_jor.GRP <- NA      # ... for group-level interaction of 'sat' and 'jor' 
}) 

The specification of the imputation methods proceeds as before. Passive steps are defined for the

components of organizational satisfaction (sat) and justice orientation (jor) as well as for the

product terms by imploying *I().

# set up imputation methods 
impMethod <- character(ncol(ex2.2))   # create empty vector for 
names(impMethod) <- colnames(ex2.2)   # imputation methods 

# ... define method for each variable 
impMethod[ "sat" ] <- "2l.pan"        # use '2l.pan' for 'sat' (two-level normal) 
impMethod[ "jor" ] <- "2l.pan"        # use '2l.pan' for 'jor' (two-level normal) 
impMethod[ "jcl" ] <- "2lonly.norm"   # use '2lonly.norm' for 'jcl' (group-level regression) 

impMethod[ "sat.GRP" ] <- "2l.groupmean"      # passive step for updating the group means 
impMethod[ "jor.GRP" ] <- "2l.groupmean"      # means and within-group deviations of 'sat' 
impMethod[ "sat.IND" ] <- "~I(sat-sat.GRP)"   # and 'jor' 
impMethod[ "jor.IND" ] <- "~I(jor-jor.GRP)" 

impMethod[ "sat.IND_jcl" ] <- "~I(sat.IND*jcl)"   # passive steps for updating the 
impMethod[ "jor.IND_jcl" ] <- "~I(jor.IND*jcl)"   # individual-level product terms 

impMethod[ "sat.GRP_jcl" ] <- "~I(sat.GRP*jcl)"   # passive steps for updating 
impMethod[ "jor.GRP_jcl" ] <- "~I(jor.GRP*jcl)"   # the group-level product terms 
impMethod[ "sat.GRP_jor.GRP" ] <- "~I(sat.GRP*jor.GRP)" 

The predictors in each model are specified as before.

predMatrix[ "sat" , c("id","sex","jor","jcl","jor.IND_jcl","jor.GRP_jcl") ] <- c(-2,3,3,1,1,1) 
predMatrix[ "jor" , c("id","sex","sat","jcl","sat.IND_jcl","sat.GRP_jcl") ] <- c(-2,3,3,1,1,1) 
predMatrix[ "jcl" , c("id","sex","sat","jor","sat.GRP_jor.GRP") ] <- c(-2,1,1,1,1) 

# set up predictor matrix 
predMatrix <- matrix(0, ncol(ex2.2), ncol(ex2.2))                 # create empty predictor 
rownames(predMatrix) <- colnames(predMatrix) <- colnames(ex2.2)   # matrix 

# ... define predictors for each variable 
predMatrix[ "sat.GRP" , c("id","sat") ] <- c(-2,1)   # -2 = cluster variable 
predMatrix[ "jor.GRP" , c("id","jor") ] <- c(-2,1)   # 1 = variable to be aggregated 

The imputation is carried out by issuing the following command. The visit sequence (visitSeq) is

specified in such a way that passive steps are updated after obtaining a new imputation to the extents

to which they are needed in subsequent imputation steps.

# set up visit sequence 
visitSeq <- c( 
  "sat","sat.GRP","sat.IND","sat.IND_jcl","sat.GRP_jcl", # impute 'sat', then update terms for 'jor' 
  "jor","jor.GRP","jor.IND","sat.GRP_jor.GRP",           # impute 'jor', then update terms for 'jcl' 
  "jcl","jor.IND_jcl","jor.GRP_jcl"                      # impute 'jcl', then update terms for 'sat' 
) 
visitSeq <- match(visitSeq, colnames(ex2.2)) 

imp <- mice::mice(data=ex2.2, maxit=10, m=20, imputationMethod=impMethod, 
                  predictorMatrix=predMatrix, allow.na=TRUE) 
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Notes

1. It is possible to include fully observed variables on the right-hand side of the JM (i.e., in Xij and Zij). This

strategy is conceptually close to the FCS approach described in the next section. Hence, for the JM, we

restricted our attention to the multivariate model in which all variables are treated as target variables (see

also Enders, Mistler, & Keller, 2016).

2. It is possible to ignore the group means entirely in the FCS approach, for example, by imputing missing data

in X by assuming only an overall effect of Y. However, this strategy “conflates” the individual- and group-

level effects and may introduce bias into the parameter estimates. Here, we consider only the more general

model that includes the group means in the set of predictor variables (see also Enders et al., 2016).

3. Under FCS, fitting the imputation models requires that some instances of the product terms are observed.

However, with missing data at the individual level, the group means are no longer known, rendering the

product terms unobserved as a result. In other words, it is not clear how “just another variable” might

differentiate interaction effects at the individual level, the group level, and across levels without knowing the

group means.

4. The bias for the slope variance in small samples may be explained by the Bayesian prior distribution

employed during MI. In our study, we used the standard “least-informative” inverse-Wishart prior distribu-

tions, which imply relatively large values for the variance components as compared with the true size of the

slope variance (here, Y2 ¼ .10 if g11 ¼ 0, and t2
1 ¼ .06 if g11 ¼ .20). Such problems are well known in the

Bayesian literature and can often be mitigated by choosing the prior distribution on the basis of the data

(McNeish, 2016).

5. When using the imputation module in Mplus to implement multilevel MI, categorical variables are treated as

ordinal, and a single latent variable is used for each categorical variable regardless of the number of

categories; variables with multiple categories are addressed by estimating c � 1 threshold parameters

(Asparouhov & Muthén, 2010).
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Grund, S., Lüdtke, O., & Robitzsch, A. (2016b). Multiple imputation of multilevel missing data: An introduc-

tion to the R package pan. SAGE Open, 6(4), 1-17. doi:10.1177/2158244016668220
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