
CHAPTER 16 

MISSING DATA IN 
MULTILEVEL RESEARCH 
Simon Grund, Oliver Ludtke, and Alexander Robitzsch 

Multilevel data are often incomplete, for example, 
when participants refuse to answer some items in a 
questionnaire or drop out of a study that involves 
multiple measurement occasions. Even though 
there is a consensus that current state-of-the-art 
procedures for statistical analyses with missing data 
should be preferred (e.g., Allison, 2001; Enders, 
2010; Little &r Rubin, 2002; Newman, 2014; Schafer 
& Graham, 2002), simpler methods such as listwise 
deletion (LD) prevail and are still widely applied in 
research practice Qelicic, Phelps, &r Lerner, 2009; 
Nicholson, Deboeck, &r Howard, 2017; Peugh &r 
Enders, 2004). This is problematic because these 
methods can distort parameter estimates and 
statistical inference. In this chapter, we provide 
a general introduction to the problem of missing 
data in multilevel research, and we present two 
principled methods for handling incomplete data: 
multiple imputation (Ml) and maximum likelihood 
(ML) estimation. We discuss how these procedures 
can be used to address missing data in multilevel 
research, and we consider their commonalities as 
well as their individual strengths and weaknesses. A 
brief computer simulation study is used to illustrate 
the statistical behavior of the parameter estimates 
obtained from these methods. Finally, we illustrate 
their application in a data analysis example and 
provide the syntax files and computer code needed 
to reproduce our results. 
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EXAMPLE: JOB SATISFACTION 
AND LEADERSHIP STYLE 

To provide an illustration of the ideas presented 
here, we adopt a running example in which we 
examine the relationships between job satisfaction 
and several work-related variables. For the purpose 
of this chapter, we regard the multilevel structure 
as cross-sectional, for example, with employees 
at Level 1 nested within work groups at Level 2. 
The example is based on the data from Klein 
et al. (2000). The study features a sample of 
750 employees from 50 work groups with measures 
of job satisfaction (SAT), negative leadership style 
(LS), workload (WL), and cohesion (COH). We 
altered the data set slightly by (a) transforming 
workload into a categorical variable (high vs. low) 
and (b) treating cohesion as a global variable that 
was directly assessed at Level 2 (e.g., a supervisor 
rating). We investigated the relationships between 
employees' job satisfaction and negative leadership 
style, workload, and cohesion using a multilevel 
random intercept model (Snijders &r Bosker, 
2012). In the hierarchical notation of Raudenbush 
and Bryk (2002), the Level 1 equation of the 
model reads 

SA T,j = 1301 + 1311 ( LSi1 - LS.,)+ 1321 WLij + ,;1 

(16.1) 
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with Level 2 equations 

Po; = 'Yoo + 'Y 01 LS.i + 'Y 02COH i + Uoi 

Here, SATij denotes the job satisfaction of an employee 
i in group j. The ratings on leadership style were 
subjected to group-mean centering, where LSij 
denotes employees' individual ratings of leadership 
style, and LS,j denotes the average rating in group j. 
Finally, WLij denotes employees' workload, and COHj 
denotes a work group's cohesion (e.g., a supervisor 
rating). The random intercept, Uoj and the residuals, 
rij were each assumed to follow a normal distribution 
with mean zero and variances t5 and CJ2, respectively. 
In the remainder of this chapter, we will express this 
model with a combined notation (e.g., Snijders & 
Bosker, 2012) 

SAT~= 'Yoo+ 'Y10 ( LS;i - LS.j) + 'Yo1 LS.j 

+ Y20WL;j+ 'Yo2COHj +uoi + r;r (16.3) 

In this chapter, we focus on multilevel models 
in which only the intercept varies across groups. 
Longitudinal research designs as well as multilevel 
models with additional random effects (e.g., random 
slopes) are considered in the Discussion section. 

MISSING DATA IN MULTILEVEL RESEARCH 

It is well known that simpler methods of dealing 
with missing data (e.g., LD) can severely compromise 
statistical decision making (e.g., Enders, 2010; 
Little & Rubin, 2002). For example, when analyses 
are based on only the complete cases, then para­
meter estimates can be biased (i.e., the estimates 
may systematically differ from the "true" values that 
hold in the population) when data are missing in 
a systematic manner (e.g., see Schafer & Graham, 
2002). However, even when data are missing in 
an unsystematic manner, inferences based on LD 
are often inefficient (i.e., low statistical power) 
due to the reduction in sample size and because 
potentially useful information about the missing 
data is being ignored (e.g., Newman, 2014). 
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Therefore, the common goals of the "principled" 
methods for handling missing data (e.g., ML and 
MI) are to (a) provide unbiased estimates for the 
statistical parameters of interest, (b) acknowledge 
the uncertainty that is due to missing data, and 
(c) make full use of the data in order to limit the 
loss of efficiency. However, before we devote 
ourselves to explaining these methods, it will 
be useful to first establish a formal framework 
for discussing the missing data problems and the 
challenges that can arise in multilevel research. 
In the following section, we discuss (a) possible 
mechanisms that can lead to missing data and 
(b) different patterns of missing data that can 
occur in multilevel data. 

Missing Oata Mechanisms 
Rubin (1976) considered three broad classes of 
missing data mechanisms. We assume that there 
is a hypothetical complete data set, Y, which can 
be decomposed into an observed part, Y0&,, and an 
unobserved part, Y mis, where an indicator matrix, R, 
denotes which elements are observed and which 
ones are missing. Rubin defined data to be missing 
at random (MAR) when the probability of observing 
data, P(R), is independent of the missing data 
given the observed data, that is, P(RIY) = P(RIYob,). 
In other words, under MAR, no link remains 
between the chance of observing data and the data 
themselves (i.e., they occur at random) once the 
observed data are taken into account. A special 
case of this scenario occurs when the probability 
of missing data is completely independent of the 
data, that is, P(RIY) = P(R), which is referred to as 
missing completely at random (MCAR). By contrast, 
when the probability of missing data is related to the 
unobserved data, that is, P(RIY) = P(RIYob,,Ym;,), it 
is more difficult to infer from incomplete data and 
strong assumptions must be made about the missing 
data mechanism (see Carpenter & Kenward, 2013; 
Enders, 2011). This is ref erred to as missing not at 
random (MNAR). 

The meaning of these mechanisms can be subtle, 
and they are best explained in an example (see 
also Enders, 2010). Consider the simple scenario 
illustrated in Figure 16.1, where negative leadership 
style is associated with lower job satisfaction, and 
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!/ 
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FIGURE 16.1. Example of systematic data loss and 
the effects of ignoring possible causes of missing data. 
LS = leadership style; MAR = missing at random; 
MNAR = missing not at random; RLS = indicator 
for missing values in leadership style; SAT = job 
satisfaction. 

ratings on leadership style are missing (R1-5) as a 
function of job satisfaction, say, because employees 
with low job satisfaction were less willing to answer 
questions about their supervisors (single-headed 
arrows). In this scenario, larger values of leadership 
style would be more likely to be missing (double­
headed arrow), rendering statements about this 
variable misleading as long as they do not take the 
missing data mechanism into account (left panel). 
For example, the estimated mean of leadership 
style may be well below the "true" mean because 
larger values have a higher chance of being missing. 
However, with job satisfaction taken into account, 
these ties are broken (right panel): Given the values 
of job satisfaction, the scores of leadership style are 
now MAR, allowing us to estimate the conditional 
mean of leadership style given job satisfaction (e.g., 
using linear regression) and to make statements· 
about the overall mean on this basis (see also 
Carpenter&: Kenward, 2013). 

The notion of missing data mechanisms allows 
us to identify conditions under which a missing 
data treatment may yield more or less accurate 
results in some model of interest. For example, LO 
generally provides unbiased estimates for a model 
of interest only under MCAR (see also Newman, 
2014). In addition, LO may provide unbiased results 
in some very specific scenarios in which data are 
MAR or MNAR (e.g., Galati&: Seaton, 2016; Little, 
1992). However, because the assertion of specific 
missing data mechanisms requires untestable 
assumptions to be made, LO should be avoided in 
favor of procedures that make full use of the data 
and that are applicable under a more general set of 
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assumptions (e.g., ML and Ml; see also Schafer&: 
Graham, 2002). Both ML and Ml provide unbiased 
results under MAR. In such a case, the exact 
mechanism need not be known and may even be 
different from individual to individual as long as 
the observed data are sufficient to "break the link" 
between the unobserved data and the probability 
that they are missing (Carpenter&: Kenward, 2013). 
To make this assumption more plausible, it is often 
recommended that auxiliary variables be included 
in the treatment of missing data. Such variables are 
not part of the model of interest but are related to 
the probability of missing data or the variables with 
missing data themselves ( Collins, Schafer, &: Kam, 
2001; Enders, 2008; Graham, 2003). Including such 
variables is beneficial because (a) they make the 
MAR assumption more plausible, and (b) if they 
are related to the variables of interest, they provide 
information about the missing values and improve 
statistical power (Collins et al., 2001). 

Patterns of Missing Data 
For the treatment of missing data, it can also be 
useful to distinguish different patterns of missing 
data. Such a distinction may help researchers to 
identify problems with the data and navigate choices 
regarding the missing data treatment. In accordance 
with Newman (2014), we distinguish three basic 
patterns: item, construct, and unit nonresponse. Item 
nonresponse denotes cases in which participants 
fail to answer a single item on a questionnaire (e.g., 
an item concerning salary from a questionnaire for 
assessing job satisfaction). By contrast, construct and 
unit nonresponse, respectively, denote cases in which 
all items pertaining to a certain construct or even 
a participant's entire questionnaire may be missing 
(e.g., because a participant was absent on the day 
the company conducted a survey). In the present 
chapter, we focus on item nonresponse, although 
construct nonresponse can of ten be addressed by 
applying similar methods (see also Gottschall, West, 
&: Enders, 2012). Unit nonresponse can be more 
complicated to deal with and is often addressed by 
employing survey weights (e.g., Sarndal, Swensson, 
&: Wretrnan, 2003). 

In multilevel research, item, construct, and 
unit nonresponse can occur at different levels 
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of the sample (see also van Buuren, 2011). 
According to Kozlowski and Klein (2000), we 

may again distinguish three different patterns of 
missing data. Data can be missing (a) at Level 1, 
(b) in global variables at Level 2, or (c) in shared 
variables at Level 2. Missing data at Level 1 refer 
to the lowest level of the sample (e.g., missing 
data from employees). Global variables refer to 
variables that are directly assessed at Level 2 
(e.g., missing data in supervisor rating), whereas 

shared variables denote variables that are assessed 
at Level 1 and then aggregated at Level 2 (e.g., a 
group average based on incomplete data collected 
from employees). Because missing data both at 
Level 1 and in shared variables at Level 2 originate at 
Level 1, they can usually be addressed by the same 
methods. Missing data in global variables sometimes 
require additional considerations but can be treated 
with similar tools. Additional patterns of missing 
data are possible (e.g., incomplete data about group 
membership), but these will not be our focus in the 
present chapter (Goldstein, 2011; for a discussion, 
see Hill &: Goldstein, 1998). 

For example, consider Table 16.1. In the first 

group of employees, only a single response to the 
workload variable is missing (Level 1, item missing). 
In the second group, the ratings on leadership style 

I \HI I I (1 I 

Hypothetical Example of a Pattern of Missing Data 
in a Multilevel Sample 

case SIOUf!. SATa LSa WLa CDH1 LS,1 

1 1 2.3 ? High 3.8 ? 
2 1 1.7 ? Low 3.8 ? 
3 1 1.7 ? High 3.8 ? 
4 2 1.8 2.3 Low ? 2.2 
5 2 1.4 2.1 High ? 2.2 
6 2 ? ? ? ? 2.2 
7 3 3.4 1.2 Low 2.7 1.4 
8 3 2.8 1.8 ? 2.7 1.4 
9 3 3.1 1.2 Low 2.7 1.4 
10 ? 2.1 2.3 High ? ? 

Note. Missing observations are indicated by question 
marks. COH = cohesion; LS = leadership style; 
SAT = job satisfaction; WL = workload. 
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are missing for all employees (Levell, item missing), 
and the group mean is missing as a result (shared 
Level 2, item missing). In the third group, one 
employee did not respond to any items (Level 1, unit 
missing). In that group, the group mean might be 
calculated from the observed values, but it will be 
subject to uncertainty and possible bias because the 
underlying items are incomplete (shared Level 2, item 
missing). In addition, the cohesion score is missing 
for all employees in that group (global Level 2, item 
missing). Finally, the last employee could not be 
assigned to a group with sufficient certainty. 

METHODS FOR HANDLING MISSING DATA 

In this section, we consider two general procedures 
that are currently regarded as principled methods 
for handling missing data (e.g., Schafer&: Graham, 
2002). First, we consider MI. We elaborate on 
different approaches to multilevel MI, and we discuss 
potential challenges when specifying imputation 
models for multilevel data. As a second procedure, 
we consider the estimation of multilevel models by 
ML Finally, we provide a comparison of the two 
procedures from a practical point of view. 

Multiple Imputation 
The basic idea in Ml is to replace missing values with 
an "informed guess" obtained from the observed data 
and a statistical model (the imputation model). A 
schematic representation of this process is displayed 
in Figure 16.2. Multiple imputation generates several 
(M) replacements for the missing data by drawing 
from a predictive distribution of the missing data, 
given the observed data and the parameters of the 
imputation model. The M data sets are then analyzed 
separately, yielding M sets of parameter estimates 
(i.e., Q1, • •• , ~), and these are combined into a set 
of final parameter estimates (i.e., ~ 1) and inferences 
using the rules outlined by Rubin (1987). 

When performing Ml, the imputation model 
must be chosen in such a way that it "matches" the 
model of interest, that is, it must be specified in 
such a way that it preserves the relationships among 
variables and the relevant features of the analysis 
model (Meng, 1994; Schafer, 2003). For example, 
if the model of interest is a regression model with 
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FIGURE 16.2. Schematic representation of multiple 
imputation (Ml) and the analysis of multiply imputed 
data sets. Q= estimator of the parameter of interest. 

an interaction effect, then the imputation model 
must also include the interaction; otherwise, it will 
be more difficult to detect the interaction effect in 
subsequent analyses (Enders, Baraldi, & Cham, 
2014). In multilevel research, it is important for 
the imputation model to incorporate the multilevel 
structure of the data. In the following, we review 
different strategies for accommodating the multilevel 
structure during Ml, including ad hoc strategies 
on the basis of single-level MI. We consider two 
broad approaches to Ml: joint modeling and the 
fully conditional specification of MI. In the joint 
modeling approach, a single statistical model is 
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specified for all incomplete variables simultaneously. 
In the fully conditional specification, each variable 
is imputed in turn using a sequence of models (for 
a discussion, see Carpenter & Kenward, 2013). 
Finally, we discuss strategies for analyzing multiply 
imputed data sets and pooling their results. 

Strategies based on single-level multiple 
imputation. Perhaps the simplest approach to 
multilevel Ml is to ignore the multilevel structure 
of the data and employ single-level MI. With this 
strategy, the multilevel structure is disregarded 
altogether. Not surprisingly, it has been shown 
that single-level MI can lead to biased estimates in 
subsequent multilevel analyses (Black, Harel, & 
Mccoach, 2011; Enders, Mistler, & Keller, 2016; 
Taljaard, Donner, & Klar, 2008). Ludtke, Robitzsch, 
and Grund (2017) demonstrated that single-level 
MI tends to underestimate the intraclass correlation 
(ICC; also known as the ICC(l)) of variables with 
missing data and may either under- or overestimate 
within- and between-group effects in multilevel 
random intercept models. Figure 16.3 shows the 
expected bias in the ICC of a variable Y relative 
to its true value (i.e., in percent) and for different 
numbers of individuals per group (n), different 
values of the ICC of Y and an auxiliary variable 
X, and different amounts of missing data (25%, 
50%). As can be seen, single-level Ml tends to 
underestimate the true ICC. For example, in the 

ICCx = ICCv = .30 
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FIGURE 16.3. Expected bias for the estimator of the ICC of a variable of interest (Y) under single-level MI (SL) 
and the dummy-indicator approach (DI). It is assumed that all groups contain the same number of individuals (n) 
and the same proportion of missing data (MD) in Y. ICCx = intraclass correlation of an auxiliary variable; 
IC Cr= intraclass correlation of the variable of interest. 
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scenario with n = 5 individuals per group and 25% 
missing data, single-level MI is expected to yield 
an estimate of only .062 when the true ICC is 
.100 and of only .191 when the true ICC is .300. 
In either case, the true ICC is underestimated by 
approximately 3 7%. 

To remedy this situation, it has been suggested that 
the multilevel structure be represented by a number of 
dummy indicator variables (i.e., the DI approach; e.g., 
Graham, 2009). This strategy effectively estimates a 
separate group mean for each group by estimating the 
imputation model conditional on group membership, 
thus incorporating group differences during MI (see 
also Enders et al., 2016). For example, the differences 
in job satisfaction between the 50 work groups in our 
running example can be represented in a regression 
model by the intercept and an additional 49 dummy 
variables (with one group selected as a reference 
group). The performance of this strategy depends on 
the situation in which it is applied. As demonstrated 
by Drechsler (2015), the DI approach tends to 
overestimate the ICC of variables with missing data 
but yields approximately unbiased estimates of the 
regression coefficients in a multilevel analysis model 
when missing data are restricted to the dependent 
variable (see also Andridge, 2011). However, 
because the DI approach exaggerates the variance 
between groups, it provides only a biased estimate of 
the between-group effect if missing values occur in 
explanatory variables (Ludtke et al., 2017). As shown 
in Figure 16.3, the DI approach tends to overestimate 
the true ICC. The bias is particularly strong when the 
true ICC is small and there are only a few individuals 
per group. For example, with n = 5 individuals 
per group and 25% missing data, the DI strategy is 
expected to yield an estimate of around .186 when 
the true ICC is .100 and of around .353 when the true 
ICC is .300. This corresponds to overestimations of 
the ICC by approximately 86% and 18%, respectively. 

Joint modeling. To accommodate the nested 
structure of multilevel data, it has been 
recommended that MI be performed by using 

mixed-effects models (e.g., Enders et al., 2016; 
Ludtke et al., 2017; Yucel, 2008). In the joint 
modeling approach to multilevel MI, a single 
model is specified for all variables with and without 
missing data, and imputations are generated from 
this model for all variables simultaneously. 1 The 
joint model can be regarded as a multivariate 
extension of univariate multilevel models; that 
is, it addresses multiple dependent variables 
simultaneously. The model reads 

(Level 1) 

(Level 2) (16.4) 

where y1ij denotes a vector of responses for individual i 
in group j with fixed intercepts "(1, random intercepts 
u 1j, and residuals rli. Similarly, Yii denotes a vector of 
responses for group j (i.e., global variables) with fixed 
intercepts "(2 and residuals u2i. The random effects 
and residuals at Level 2 (u1j,u2} are assumed to 
jointly follow a multivariate normal distribution with 
mean zero and covariance matrix 'I'. The residuals 
at Level 2 follow a multivariate normal distribution 
with mean zero and covariance matrix~-
The joint model was originally developed by Schaf er 
and Yucel (2002) to treat missing data at Level 1 
and has since been extended to address missing 
data in categorical variables and variables at Level 2 
(Asparouhov 6r Muthen, 2010; Carpenter 6r 
Kenward, 2013; Goldstein, Carpenter, Kenward, 6r 
Levin, 2009). 

To illustrate how the joint model accommodates 
the multilevel structure, consider our running 
example and the illustration in Figure 16.4. The 
model of interest is a random intercept model 
that includes variables assessed at Levels 1 and 2 
as well as relations between job satisfaction and 
leadership style both within and between groups 
(Equation 16.3). The joint model includes all 
variables as dependent variables in a multivariate 
random intercept model (Figure 16.4). For each 
variable at Level 1, the model includes a random 

I The joint model can be expressed in a more general way, which allows fully observed variables to be included as predictor variables on the right-hand 
side of the model. However, in the present chapter, we consider only the "empty" specification of the model because it is easy to specify and widely 
applicable in the context of multilevel random intercept models (Enders et al., 2016; for a discussion, see Grund, Ludtke,&: Robiusch, 2016b). 
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FIGURE 16.4. Schematic representation of the 
joint imputation model and its distributional 
assumptions in the running example. COH = 
cohesion; LS= leadership style; SAT= job 
satisfaction; WL = workload. 

intercept U11 = (usAr.J, uis.J, uw1), representing the 
components of these variables that vary between 

groups, and a residual term r1iJ = (rsAT.iJ• ris.;1, rWI..iJ), 
representing the differences within groups. For 
cohesion, which was assessed directly at Level 2, 
the model includes a residual term u 21 = (ucott./ The 
critical point in this model is that it assumes that 
the random effects and residuals at Level 2 (i.e., 
global and shared variables) may be correlated ('I') 

and that the residuals at Level 1 may be correlated 
as well (~). This illustrates that the joint model 
indeed "matches" the multilevel structure because 
it allows the user to differentiate between (a) the 
within- and between-group components that can be 
present in variables at Level 1 and (b) the relations 
between variables within and between groups. The 
joint model (or variants thereoO is implemented in 
the packages pan (Schafer&: Zhao, 2016) andjomo 
(Quartagno &: Carpenter, 2016) for the statistical 
software R as well as in the standalone software 
packages SAS (Mistler, 2013), Mplus (Asparouhov 
&: Muthen, 2010), and REALCOM (Carpenter, 
Goldstein,&: Kenward, 2011). 

Fully conditional specification. As an alternative 
to the joint model, the joint distribution of the 
variables with missing data can be approximated by 
imputing one variable at a time using a sequence of 
univariate models. To address multivariate patterns of 
missing data, the procedure iterates back and forth 
between variables with missing data, conditioning 
on the other variables in the data set (or a subset 
of them). This approach is referred to as the fully 
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conditional specification of Ml (FCS; van Buuren, 
Brand, Groothuis-Oudshoorn, &: Rubin, 2006). 
Specifically, for a set of variables at Levels 1 and 2, a 
sequence of conditional imputation models can be 
specified as follows: 

(Level 1) 

(Level 2) (16.5) 

where y1;1p is the p-th variable with missing data 
at Level 1, and y;J-CpJ is a set of predictors for that 
variable that may include any variable other than 

Y1;Jp· Similarly, YiJq is the q-th variable with missing 
data at Level 2 (i.e., a global variable), and YJ-CqJ is 
a set of predictor variables that may include any 
other variable at Level 2 (i.e., global variables) 
as well as the between-group components of any 
variable at Level 1. The random intercepts u1P 

as well as the residuals r;Jp and uiq in each model 
are each assumed to follow independent normal 
distributions (see also van Buuren, 2011). To 
address multiple variables with missing data, 
the FCS algorithm arranges them in a sequence 
and visits one variable at a time, generating 
imputations from the imputation model assigned 
to each variable. Once a variable has been 
completed in this manner, it can be used as a 
predictor in any of the other imputation models. 
After each variable has been visited, the sequence 
is repeated, and new imputations are generated 
until the algorithm converges, yielding the first 
of multiple imputations. 

The sequential nature of the FCS algorithm 
requires some rethinking. In contrast to the 
joint model, the FCS algorithm allows different 
predictors to be selected for each target variable, and 
conversely, all target variables can act as predictors 
in any other target's imputation model. Moreover, 
in order to preserve the relationships between 
variables, it is in fact required that the imputation 
model for each target variable is conditioned on 
the other variables. To incorporate relationships 
between variables at Level 2, the group means of the 
variables at Level 1 must be calculated and included 
as predictors. In addition, the group means must be· 
updated once new imputations for the underlying 
variables have been obtained; this process of 
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updating the group means is known as passive 
imputation (e.g., Royston, 2005). 

To illustrate multilevel FCS, consider our 
running example and the illustration in Figure 16.5. 
Missing data in job satisfaction, leadership style, 
and workload can be imputed by applying separate 
multilevel models, where the model for workload 
should be appropriate for binary categorical data 
(e.g., a logistic multilevel model). Cohesion can be 
imputed by using a regression model at Level 2. 
To preserve the relationships between the 
variables within and between groups, all variables 
are included as predictor variables in the other 
variables' imputation models, and the group means 
are updated and included by using passive imputation. 
The FCS and similar approaches for multilevel data 
are implemented in the package mice ( van Buuren 
& Groothuis-Oudshoom, 2011) for the statistical 
software R as well as in the standalone software 
packages Mplus (Asparouhov & Muthen, 2010) and 
Blimp (Keller & Enders, 2018). 

Incomplete categorical variables. There are several 
options for treating missing values in categorical 
and ordinal variables. The first option is to treat 
categorical variables as continuous for the purpose 
of MI and to round the resulting values to comply 
with the original categories in that variable. For 

example, imputations for ordinal data may be 
rounded using 0.5, 1.5, and so forth as thresholds; 
for binary data, adaptive rounding can be applied, 
which uses the mean of the imputed values to 
adjust the threshold accordingly (see Carpenter 
& Kenward, 2013). Adaptive rounding has been 
shown to perform well for binary missing data 
(Bernaards, Belin, & Schafer, 2007), but also MI 

without rounding appears to work well for binary 
and (some) ordinal variables (Schafer, 1997; W Wu, 
Jia, & Enders, 2015). Finally, it is possible to impute 
categorical and ordinal variables using a latent 

variable approach. In this approach, imputations are 
generated for a set of underlying latent variables that 
represent the relative probability of being assigned 
to a given category. Based on the latent scores, the 
assignment lo a category can then be simulated by 
using an appropriate link function (e.g., a probit 
link for latent normal variables; see Carpenter & 
Ken ward, 2013). For a variable with C categories, 
this approach introduces C - I latent variables that 
represent the possible contrasts between categories 
(Carpenter & Kenward, 2013; see also Goldstein et al., 
2009). For binary variables, this is equivalent to 
generating imputations from a generalized linear 
mixed-effects model (e.g., a logistic or probit model). 
These procedures, too, appear to work well for both 
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FIGURE 16.5. Schematic representation of the sampling steps in 
the fully conditional specification of multilevel multiple imputation 
in the running example. COH = cohesion; LS = leadership style; 
SAT= job satisfaction; WL = workload. 



binary and polytomous data (Demirtas, 2009; W Wu 
et al., 2015; see also Enders et al., 2016). 

Analyzing multiply imputed data. The idea under­
lying MI is to generate plausible replacements for 
each missing value, thus transforming a data set with 
"missing data" into a data set with "complete data." 
This process is repeated M times (hence, the qualifier 
"multiple"), yielding M completed versions of the 
original data (see Figure 16.2). Once the set of M data 
sets has been obtained, the model of interest must be 
fit separately to each data set, yielding M estimates of 
some parameter of interest, say Qm (e.g., regression 
coefficients; m = 1, ... , M), and M estimates of the 
sampling variance of that estimate, Ym (e.g., squared 
standard errors). According to Rubin (1987), the 
combined point estimate is the average of the 
individual estimates 

(16.6) 

The combined estimate of the sampling variance of 
the estimator incorporates two different sources of 
uncertainty: 

(16.7) 

where W denotes the sampling variance within 
imputations, that is, the average of the individual 
variance estimates 

- 1 LM -W=- V M m=I m, 
(16.8) 

and B denotes the sampling variance between imputa­
tions, that is, the variance of the point estimates 
across data sets: 

(16.9) 

Using the combined point and variance estimates, 
standard hypothesis tests can be carried out on the 
basis of a Student's t distribution with v degrees of 
freedom. Rubin (1987) recommended calculating the 
degrees of freedom as follows: 

v = (M -1)[1 +-1-]2
, 

RIV 
(16.10) 
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where the expression 

RIV= W -
(1+1/M)B' 

(16.11) 

denotes the relative increase in the sampling variance 
of the estimator that is due to missing data (see 
also Barnard & Rubin, 1999). In addition, several 
alternative formulas have been proposed for more 
complex hypotheses that may involve several 
parameters simultaneously, for example, when testing 
the overall effect of categorical explanatory variables 
or when testing for random slopes using a likelihood­
ratio test (see Appendix 16.1; see also Reiter & 
Raghunathan, 2007). 

The general idea behind Rubin's rules is to 
approximate the sampling distribution of Q that 
would be obtained with infinite M but based on 
only a small number of imputations. Naturally, the 
larger the number that is chosen for M, the better 
the approximation becomes, which raises the 
question of "How many are needed?" Traditionally, 
M = 5 imputations have been recommended (Rubin, 
1987), but more can be necessary when the amount 
of missing data increases or the model of interest 
becomes more complex (Bodner, 2008; Graham, 
Olchowski, & Gilreath, 2007). This is especially 
important because most software packages for 
multilevel MI generate M = 5 imputations by default. 
In our experience, M = 20 imputations are usually 
sufficient for estimating and testing the parameters 
in most applications of multilevel models. However, 
when large portions of the data are missing (say 
more than 50%) or complex hypotheses that 
involve multiple parameters are being tested, we 
recommend generating 50 to 100 imputed data sets 
(see also Bodner, 2008; Raghunathan, 2015). 

Maximum Likelihood 
The general principle behind ML estimation is that 
the values of the parameters in a statistical model 
can be chosen in such a way that the likelihood of 
the data becomes maximal. When the data contain 
missing values, it is often possible to estimate 
the model directly using only the observed data. 
This procedure is of ten referred to as direct or full 
information ML Using ML, the likelihood is evaluated 
on a case-by-case basis; that is, cases with incomplete 
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records contribute to the likelihood only to the extent 
to which they have data (Little&: Rubin, 2002). The 
ML estimates of the parameters in a model of interest 
are consistent when the data are MAR or MCAR; that 
is, missing data occur in an unsystematic fashion 
when the variables in the model are taken into 
account (Little&: Rubin, 2002). 

The main principle by which ML "deals" with 
missing data is that it imposes distributional 
assumptions on incomplete variables. For this 
reason, common multilevel software packages 
often handle missing values only in the dependent 
variable of the model (e.g., HLM, SAS), where such 
assumptions are already in place, but cases with 
missing values in explanatory variables are discarded 
because no distributional assumptions have been 
made for them. To circumvent this restriction, it has 
been suggested that researchers adopt the framework 
of structural equation modeling (SEM), which allows 
the user to introduce distributional assumptions 
for all variables by defining them as endogenous 
(i.e., dependent) variables in a single analysis model 
(e.g., Allison, 2012; Enders, 2010). For example, 
in the statistical software Mplus, this is achieved 
by including the variances and covariances of the 
explanatory variables in the modeling statement. 
Using this strategy, it is of ten possible to prevent the 
software from discarding these cases and to apply the 
ML principle to both the dependent and explanatory 
variables in a model of interest. Furthermore, this 
perspective offers the possibility of including auxiliary 
variables that may improve the plausibility of the 
MAR assumption and the accuracy of estimates 
under ML (Enders, 2008; Graham, 2003). Software 
that supports ML for multilevel models from the 
perspective of SEM includes the standalone software 
packages Mplus (Muthen &: Muthen, 2012), Latent 
GOLD (Vermunt &: Magidson, 2016), gllamm 
(Rabe-Hesketh, Skrondal, &: Pickles, 2004), and 
xxM (Mehta, 2013). 

As an alternative to direct ML, estimates of the 
parameters in a multilevel model can be obtained 
from a two-stage procedure by first estimating a 
covariance matrix within and between groups on 
the basis of the observed data; in the second stage, 
the parameters of interest are derived from the 
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variances and covariances estimated in the first stage 
(Yuan&: Bentler, 2000). Conceptually, two-stage 
ML is similar to the perspective taken in SEM. We 
will not consider this approach further, but using 
two-stage ML can offer advantages when working 
with nonnormal variables and because auxiliary 
variables are easily incorporated into the estimation 
procedure (Savalei &: Bentler, 2009; Yuan, Yang­
Wallentin, &: Bentler, 2012). 

Comparison of Maximum Likelihood 
and Multiple Imputation 
From a theoretical point of view, ML and MI are 

not vastly different, and the two can be expected 
to yield similar results when they operate under 
similar assumptions (Schafer&: Graham, 2002). 
However, from a practical point of view, the 
differences can be substantial. Fitting models 
using ML is often easy, provided that a software 

package that supports the estimation of the model 
of interest can be found. Furthermore, because 
Ml does not separate the treatment of missing 
data from the analysis, the missing data model is 
always consistent with the analysis model; that 
is, the two models are always based on the same 
set of assumptions (Allison, 2012). However, 
integrating the treatment of missing data and the 
estimation of the analysis model into a single step 
also has disadvantages. First, the distributional 
assumptions needed for the treatment of missing 
data now also enter the analysis model even though 
they might not have originally been part of it. 
Second, auxiliary variables must be incorporated 
directly into the model of interest, thus making the 
analysis model more complex (Graham, 2003). In 
applications with only a few well-behaved variables, 
this is usually not a problem; but in practice, it 
can become problematic, for example, when the 
inclusion of auxiliary variables leads to a mix of 
continuous and categorical variables at both levels 1 
and 2. Such models are difficult for the user to 
specify, and a given software package might not 
even fully support it, forcing the user to alter the 
model or make decisions he or she would not have 
made otherwise. 



Conducting Ml, on the other hand, is more 
complicated at first glance. First, an imputation 
model that is consistent with the model of interest 
must be chosen. Then, the user must specify the 
number of imputations and the number of iterations 
for which the sampling procedure should run. 
Finally, he or she must ensure that the algorithm 
has converged before any analyses can be carried 
out (see also Allison, 2012). Once the imputations 
have been generated, the user must fit the analysis 
model to each of the imputed data sets and combine 
their results into a final set of parameter estimates 
and inferences. Especially for inexperienced users, 
performing Ml can be a daunting task. On the 
other hand, modem procedures for multilevel Ml 
are powerful and very flexible in accommodating 
a variety of models. In addition, many software 
packages for multilevel Ml automatize at least some 
of these steps. Finally, the separation between the 
treatment of missing data and the analysis phase 
makes it straightforward to handle a variety of 
variables and to include auxiliary variables without 
altering the model of interest. 

SIMULATION 

Next, we report the results from a computer 
simulation study. This study was intended to 
illustrate the general performance of ML and Ml 
in a controlled setting. We conducted this study 
with two models of interest in mind. The first 
model of interest (Model I) was the model from 
our running example: 

(16.3, revisited) 

This represents the standard formulation of multi­
level models in which the observed group means 
represent the shared perception of leadership style 
among members of the same group. 

The second model of interest (Model 2) is also 
known as the "multilevel latent covariate model" 
(Ludtke et al., 2008) and differs from the first 
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model in that it uses the true, unobserved group 
means or between-group components to represent 
the shared perception of individuals in each group. 
The model reads 

(16.12) 

where LSw,ii and LS8j denote the within- and between­
group components of leadership style (Asparouhov &: 
Muthen, 2006; Ludtke et al., 2008). Formulating the 
model in terms of the true within- and between-group 
components can be beneficial because it corrects 
for the fact that the group mean is calculated 
from a finite number of observations and thus 
provides only an unreliable measure of the true 
between-group component (see Croon &: van 
Veldhoven, 2007; Raudenbush&: Bryk, 2002). In 
the organizational literature, the reliability of the 
group mean is also known as the ICC(2), and it 
expresses the extent to which differences between 
the observed group means reflect true differences 
between groups (Bliese, 2000; see also LeBreton 
&: Senter, 2008). It is a matter of debate in the 
multilevel literature which formulation of the 
model of interest is more appropriate. For example, 
it can be argued that the formulation in Model 2 
is appropriate if the shared perception among 
individuals is of primary interest (e.g., ratings of 
team climate, leadership effectiveness), whereas 
Model 1 may be appropriate if the variation within 
groups is itself of interest or if the observed group 
mean is simply regarded as a summary measure 
(e.g., gender ratio, socioeconomic status; for further 
discussion, see Ludtke et al., 2008). However, the 
main motivation for including these two approaches 
to modeling between-group effects in the present 
chapter was that their distinction is important for 
the treatment of missing data under ML (see below). 

In the simulation study, the samples were gene­
rated from either Model 1 (the "standard" model) 
or Model 2 (the "latent covariate" model) in order 
to allow for a comparison between conditions in 
which one of the two models is the "true" model. 
The parameters of the simulation were loosely based·. 
on the data from Klein et al. (2000). The samples 
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consisted of G = 50 groups of size n = 10. All variables 
were standardized across groups with mean zero 
and unit total variance. For the ratings on leadership 
style and job satisfaction, we assumed IC Cs of .10 
and .20, respectively. In addition, we assumed that 
negative leadership style was correlated with cohesion 
at the group level (r = -.15). For the two workload 
categories (high vs. low), we generated a standard 
normal variable with an ICC of .20, and we used 
0.38 as a breaking point to dichotomize that variable, 
resulting in 35% and 65% of individuals with high 
and low workloads, respectively. For simplicity, we 
assumed that workload was uncorrelated with the 
other explanatory variables. Finally, we assumed the 
following fixed effects in the data-generating model: 
'Yoo= 0 (intercept), y10 = -.20 and y01 = -. 70 (leadership 
style), y20 = -.30 (workload), and y02 = .10 (cohesion). 
The variance components tj and a2 then followed. 
We induced missing values in cohesion completely 
at random (5%) and in leadership style (15%) and 
workload (10%) on the basis of job satisfaction (lower 
job satisfaction corresponded with a greater chance of 
missing data). Finally, we induced missing values in 
job satisfaction completely at random (10%). 

Using this procedure, we generated 5,000 data 
sets from both Models 1 and 2. In each data set, we 
carried out MI using both joint modeling (using 
jomo; Quartagno &: Carpenter, 2016) and FCS 
( using mice; van Buuren &: Groothuis-Oudshoorn, 
2011) in the statistical software R. Afterwards, we 
fitted the respective model of interest using Mplus 7 
(Muthen &: Muthen, 2012). We also used Mplus 
to estimate the model with ML, and we addressed 
missing data in explanatory variables by specifying 
distributional assumptions for these variables. In 
the context of Model 2, applying ML is relatively 
easy because Mplus already imposes the necessary 
distributional assumptions when decomposing 
leadership style into its within- and between-group 
components. The distributional assumptions for the 
remaining variables can be added by defining them 
as endogenous variables at Level 1 or Level 2, 

respectively. 2 On the other hand, in the context of 
Model 1, missing data in explan~tory variables pose 
a greater challenge when estimating the model using 
ML We consider two strategies for this case, neither 
of which is completely satisfying. In the first strategy 
(MU), distributional assumptions are specified as 
before by defining explanatory variables as endogenous 
variables at Levels 1 and 2, respectively. However, 
this strategy unintentionally adopts the within- and 
between-group decomposition for leadership style 
(as in Model 2), thus correcting between-group 
effects that did not require correction. As a second 
option (MU), the group means of leadership style 
can be calculated beforehand from the observed 
data, and distributional assumptions can be imposed 
only on the within-group deviations of leadership style. 
In this specification, the group means are consistent 
with the ana~ysis model, but the between-group effects 
of leadership style may be biased if values are missing 
in a systematic manner (similar to LD). 

In Table 16.2, we included the mean estimates of 
the three procedures for the two models of interest 
as well as the coverage of the 95% confidence 
interval. Ideally, the mean estimates should be close 
to the true values in the data-generating model, 
and the coverage rates should be close to 95%. In 
the context of Model 2, both MI and ML yielded 
parameter estimates that were very close to the true 
values, and coverage rates were close to the nominal 
value of 95%. However, the between-group effect 
of leadership style (y01 ) was slightly too large under 
ML, which may be attributed to the small sample 
size at Level 2 (Ludtke et al., 2008). In the context 
of Model 1, the parameter estimates obtained from 
MI were again close to the true values, but the 
between-group effect of leadership style (y01 ) was 
slightly underestimated. Under ML, specifying 
leadership style as an endogenous variable (MU), 
and thus adopting the within- and between-group 
decomposition, led to severe bias in the between­
group regression coefficients. By contrast, when 
the group means were calculated beforehand 

2Using Ml, it was also not straightforward to accommodate both (a) the multilevel structure of the variables and (b) the fact that workload is 
categorical. Therefore, we treated workload as a continuous variable. Although this may be acceptable for a dichotomous variable with similar 
frequencies in both categories, it will lead to problems when explanatory variables have multiple categories or some categories occur much more 
frequently than others. 
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I \I; I I I h 2 

Mean Estimates (and Coverage Rates for the 95% Confidence Interval) for the Two Models of Interest 
for Multiple Imputation and Maximum Likelihood 

Model 1 Model 2 

True JM FCS ML1 ML2 True JM FCS ML1 

Yoo 0.000 0.003 0.002 0.004 0.011 0.000 0.001 0.000 0.001 
(95.0) (95.0) (96.1) (94.1) (94.8) (94.3) (95.1) 

Y10 -0.200 -0.202 -0.200 -0.203 -0.200 -0.200 -0.201 -0.200 -0.200 
(94.7) (94.7) (94.9) (94.7) (93.8) (94.0) (94.3) 

Yo, -0.700 -0.648 -0.660 -1.215 -0.633 -0.700 -0.708 -0.714 -0.803 
(94.6) (94.5) (91.8) (90.5) (95.4) (95.1) (96.1) 

Y20 -0.300 -0.301 -0.300 -0.302 -0.303 -0.300 -0.298 -0.297 -0.299 
(94.8) (95.0) (94.9) (94.8) (94.9) (94.9) (94.9) 

Yo2 0.100 0.102 0.102 0.067 0.105 0.100 0.098 0.099 0.095 
(94.3) (93.8) (95.5) (92.7) (95.0) (94.4) (95.4) 

t~ 0.083 0.085 0.082 0.035 0.081 0.088 0.079 0.078 0.069 
(95.4) (94.0) (91.9) (91.5) (95.0) (93.9) (92.3) 

cr2 0.751 0.747 0.747 0.746 0.749 0.790 0.786 0.786 0.786 
(94.1) (94.1) (94.1) (94.3) (94.6) (94.5) (94.8) 

Note. FCS = fully conditional specification of multiple imputation; Yoo= intercept; y10 = within-group effect of 
leadership style; y01 = between-group effect of leadership style; y20 = effect of workload; y02 = effect of cohesion; 
JM = joint modeling of multiple imputation; MLI = maximum likelihood with true within- and between-group 
components for leadership style; MU = maximum likelihood with group means for leadership style calculated 
from the observed data; a2 = residual variance; 't5 = intercept variance. 

from the observed data (MU), thus treating only 

the within-group deviations as endogenous, the 

group-level effect of leadership style (y01 ) was only 

slightly underestimated. The coverage rates were 

relatively close to the nominal value of 95% for 
most parameters but tended to be slightly smaller 

under ML, especially when the group means were 

calculated from the observed data (MU). 

In conclusion, both ML and MI provided accurate 
results when their assumptions were met and when 

these assumptions were consistent with the model 
of interest. These requirements were more easily 

fulfilled in the context of Model 2, in which case both 

MI and ML yielded reasonable parameter estimates. 
However, in the context of Model 1, the results were 

more diverse. Under ML, following the usual advice 
to treat explanatory variables as endogenous can lead 
to an unwanted "shift" in the analysis model; in the 

present case, this resulted in parameter estimates 

that were severely distorted. When the group means 

were calculated beforehand, we observed only little 

bias. However, this approach slightly overestimated 

the precision of the parameter estimates because it 
ignored the fact that group means were calculated 

from incomplete records. Under MI, estimates were 
accurate, and the confidence intervals showed good 

coverage properties, providing the most reasonable 

approximation to the true parameters overall. 

EXAMPLE APPLICATION 

In this section, we apply the missing data methods to 
our running example. The running example is based 
on the data from Klein et al. (2000) and essentially 

mimics the conditions in our simulation study except 

that the example data set contains unstandardized 
variables instead. Missing values were induced in the 

data set in the same way as in the simulation study. 
As a result, 21.9% of the employees had missing 
values on at least one variable; these were distributed 

across job satisfaction (9.2%), leadership style 
(12.3%), workload (11.5%), and cohesion (4.0%). 
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The data set is included in the R package mitml 
(Grund, Robitzsch, & Ludtke, 2016). The model 

of interest was the "standard" multilevel model in 

Equation 16.3 (Model 1). We applied MI using the 

joint model implemented in the jomo package in 
R, and we estimated the model of interest using the 

lme4 package (Bates, Maechler, Balker, & Walker, 

2016). To assist with the analyses, we used the 

mitml package, which provides a wrapper function 
for the jomo package as well as tools for analyzing 

multiply imputed data sets (see also Grund et al., 

2016b). For ML estimation, we used Mplus, where 

we calculated the group means of leadership style 
from the observed records (as in MU) and adopted 

the within- and between-group decomposition for 

the remaining variables (as in MU). The computer 

code and the Mplus syntax file are provided in 
Appendix 16.2. 

To set up the imputation model using jomo 
and mitml, two formulas that denoted the impu­

tation model for variables at Levels 1 and 2, 

respectively, had to be specified (see Equation 16.4 
and Figure 16.4). In accordance with the "empty" 

specification of the model, all variables were treated 
as target variables, and no predictor variables were 

specified except for a "one" for the intercept. We 

generated M = 100 imputations in this manner. 

The number of iterations for the algorithm was 

chosen in such a way that convergence could be 

established by inspecting convergence criteria 
(e.g., Gelman & Rubin, 1992) and diagnostic plots 

for the parameters of the imputation model ( Grund 
et al., 2016b; see also Schafer & Olsen, 1998). 

After running MI, the model of interest was fitted 

to each of the imputed data sets using lme4, 

and the parameter estimates wert pooled by 

employing Rubin's rules in order to obtain a final 

set of parameter estimates and inferences. The 

results obtained from ML and MI are presented in 

Table 16.3. The two analyses suggested that negative 

leadership style had a relatively strong impact 

on employees' job satisfaction when employees' 

workload and the work group's cohesion were 
taken into account. Under MI, for any one-unit 

change in the leadership style ratings within groups 
(Level 1), the expected change in job satisfaction 

was -.532 (p < .001). Between groups, a one-unit 

change in the shared perception of leadership style 
ratings (Level 2) was associated with an expected 
change in job satisfaction of -1.566 (p < .001). 

I\Bll lh3 

Estimates for the Parameters in the Model of Interest Obtained From Maximum Likelihood and Multiple 

Imputation in the Running Example 

M1!_/us(ML21 ;omo (MIi 

Parameter Est. SE Est. SE RIV FMI 

Intercept (Yoo) 0.291 "" 0.136 0.257t"" 0.140 0.167 0.143 
Level 1 

Leadership style (y,o) -0.526"" 0.091 -0.532"" 0.092 0.341 0.255 
Workload (Y20) -0.863""" 0.197 -0.842"" 0.195 0.259 0.206 

Level 2 
Leadership style (Yo,) -1.491"" 0.319 -1.566"" 0.349 0.237 0.192 
Cohesion (Yo2) 0.237""" 0.088 0.243'"" 0.091 0.075 0.070 

Level 2 residual variance (t~) 0.268'"" 0.128 0.286"" 
Level 1 residual variance (cr2) 4.940"" 0.283 4.962""" 

Note. ML2 = maximum likelihood with group means for leadership style calculated from the observed data; 
MI= multiple imputation; Est. = estimate; SE= standard error; RIV= relative increase in variance; FMI = fraction 
of missing information; Yoo= intercept; y10 = within-group effect of leadership style; y20 = effect of workload; 
y01 = between-group effect of leadership style; y02 = effect of cohesion; "t5 = intercept variance; s2 = residual 
variance. 
"p <.10. 'p <.05. ''p < .01. ... p < .001 (two-tailed). 
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Furthermore, there was a negative effect of high (vs. 
low) workload (-0.842, p <. 001) on job satisfaction 
and a positive effect of cohesion (0.243, p = 0.007). 
The results obtained from ML were virtually 
identical. Perhaps the largest difference between 
the two procedures was the standard error for the 
between-group effect of leadership style, which 
might reflect the slightly too narrow confidence 
intervals under ML observed in the simulation study. 

In addition, we also investigated whether the 
within-group effect of leadership style varied across 
groups, that is, whether there was significant 
variance in the slope of leadership style. To this 
end, we fitted an alternative model that contained a 
random slope for within-group effect of leadership 
style. The alternative model was compared with 
the model of interest using the D3 statistic (Meng 
& Rubin, 1992), which can be interpreted as 
a pooled LRT for multiply imputed data sets 
(Appendix 16.1). The D3 statistic suggested that 
there was not enough evidence to conclude that 
the effect of leadership style truly varied across 
groups, F(2,3707.9) = 2.621 (p = .071). Therefore, 
the alternative model was rejected in favor of the 
model of interest. 3 Furthermore, we were interested 
in whether the effect of leadership style was larger 
between than within groups. For this purpose, we 
used the D1 statistic, which allowed us to test the 
difference between the two coefficients against zero 
by specifying it as a linear constraint (Appendix 
16.1; see also Kreft, de Leeuw, & Aiken, 1995). The 
D1 statistic suggested that the two parameters were 
significantly different from one another, F(l,2471.3) 
= 8.253 (p = .004), that is, the between-group effect 
(-1. 5 7) was significantly larger than the within­
group effect (-0.53). 

DISCUSSION 

In this chapter, we provided an introduction to 
multilevel modeling with missing data. In particular, 
we looked at two principled methods for handling 
missing data: MI and estimation by ML The general 
ideas behind ML and MI are not vastly different, and 
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both may be regarded as state-of-the-art procedures 
for handling missing data (Schafer & Graham, 2002). 
The differences between the two methods are most 
often of a practical nature. Although the two proce­
dures tend to give the same answers if they are based 
on similar assumptions, carrying out a given task 
is often easier with one procedure than the other. 
For example, ML is very easy to incorporate into 
one's regular workflow because the missing data 
treatment is performed during the estimation of the 
model of interest (see also Allison, 2012). On the 
other hand, addressing missing values and including 
auxiliary variables may prove to be challenging 
depending on where the missing data occur and 
how complex the model becomes once all factors 
are taken into account, for example, if categorical 
variables contain missing data or between-group 
effects are represented by observed group means. By 
contrast, MI allows for the very flexible modeling of 
different types of variables and including auxiliary 
variables is straightforward. On the other hand, 
performing MI and analyzing multiple data sets can 
be challenging, especially for less experienced users 
or when nonstandard analyses and hypothesis tests 
are required. That being said, although we clearly 
see ML as the easier-to-use alternative (see Allison, 
2012; Enders, 2010), we tend to favor MI for its 
flexibility and because it separates the imputation 
from the analysis phase (see Carpenter & Kenward, 
2013; Schafer & Graham, 2002; see also Grund, 
Ludtke, & Robitzsch, 2018). 

As in every introduction to these or similar 
procedures, it is not possible to give all possible 
research scenarios the attention they deserve. In 
this chapter, we restricted our discussion to cross­
sectional multilevel models with a single level of 
clustering, that is, individuals nested within some 
higher-level collective. In principle, the procedures 
discussed here generalize naturally to models 
with additional levels of clustering, for example, 
three-level models (Goldstein, 2011; Keller, 2015; 
Yucel, 2008), models with cross-classified random 
effects (Goldstein, 2011; Hill & Goldstein, 1998), 
or models with multiple memberships ( Goldstein, 

'Note that, because the imputation model did not include random slopes, it did not "match" the alternative model. For this reason, the hypothesis test' 
was not completely trustwonhy and was included here only for the purpose of illustration. 
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2011; Yucel, Ding, Uludag, &: Tomaskovic-Devey, 
2008). However, these procedures are not widely 
available in standard software, and more research 
is needed to evaluate their performance in realistic 
research scenarios. 

Another topic that we did not discuss explicitly 
is the treatment of missing data in longitudinal 
research designs (e.g., repeated measurements, diary 
studies, experience sampling, ecological momentary 
assessment). This topic is particularly interesting, 
however, because multilevel models are frequently 
used to analyze longitudinal data. Fortunately, 
many of the ideas presented here can also be applied 
to longitudinal data (see also Black, Harel, &: 
Matthews, 2013; Newman, 2003). For example, 
assume that a researcher is interested in estimating 
a growth curve model with missing data in the 
dependent variable that should be treated using 
MI. It is then useful to distinguish studies in which 
the longitudinal design is balanced or unbalanced 
with respect to time, that is, whether all participants 
were measured at the same or a different set of time 
points (see W Wu, West,&: Taylor, 2009). If all 
participants were measured on the same set of time 
points, then the longitudinal data structure can 
be expressed in a wide data format, and single­
level MI can be used to treat the missing values 
in the dependent variable (for a two-stage ML 
procedure, see Yuan et al., 2012). However, if 
participants were measured at potentially different 
or unbalanced time points, then procedures based 
on mixed-effects models for multilevel MI may be 
more appropriate (see Equation 16.4). However, 
even though the model by Schaf er and Yucel 
(2002) was developed explicitly with applications 
to longitudinal data in mind, the model lacks the 
flexibility to incorporate some covariance structures 
at Level 1 that are commonly used in longitudinal 
analysis models (see Pinheiro&: Bates, 2000). 
Similar problems may be observed when ML is 
used to estimate growth curve models because it 
is difficult to establish a homogeneous covariance 
structure for this type of data (W Wu et al., 2009). 

Even though there has been a substantial amount 
of interest in missing data methods for multilevel 
data in recent years, some questions still provide 
challenges for the future. One such example is the 
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treatment of missing data in multilevel models with 
random slopes or in models with nonlinear and 
interaction effects. For example, it has been shown 
that current implementations of MI are not perfectly 
suited for handling missing data in explanatory 
variables in multilevel models with random slopes 
(e.g., Enders et al., 2016; Gottfredson, Sterba,&: 
Jackson, 2017; Grund, Ludtke,&: Robitzsch, 2016a; 
see also von Hippel, 2009). Similar problems may 
occur under ML but have yet to be discussed more 
thoroughly in the applied missing data literature 
(however, see Enders et al., 2014). In order to make 
sure that imputations are consistent with the model 
of interest, it has been argued that the substantive 
analysis model should be taken into account during 
MI (Bartlett, Seaman, White,&: Carpenter, 2015; 
Carpenter&: Kenward, 2013). Several authors have 
proposed procedures that incorporate these ideas 
using rejection sampling or a Metropolis-Hastings 
algorithm for multilevel MI, but these procedures are 
not yet available in standard software (Erler et al., 
2016; Goldstein, Carpenter,&: Browne, 2014; 
L. Wu, 2010). Similar procedures have been proposed 
in the context of ML, where the likelihood function 
in a multilevel model can be factored into separate 
components that ref er to the model of interest and 
additional models for explanatory variables with 
missing data (Ibrahim, Chen,&: Lipsitz, 2001; 
Stubbendick &: Ibrahim, 2003). 

To sum up, missing data are an ever-present 
problem in research practice. We believe that ML 
and MI provide powerful tools for the treatment 
of missing data in multilevel research. The two 
procedures both come with their own strengths 
and weaknesses, and one may be pref erred over 
the other for a specific missing data problem. 
At the end of the day, however, they are more 
similar than they are different, and both offer a 
substantial improvement over approaches such as 
LD in terms of generality, theoretical foundation, 
accuracy of parameter estimates, and statistical 
power. In the present chapter, we provided an 
introduction to these methods, and we offered 
guidance on how to apply them in multilevel 
research. The treatment of missing data is not 
without its challenges, and there remain many 
open (and interesting) questions for the future. 



However, we believe that these methods are a 

valuable addition to the researcher's toolbox 
' 

which, if applied correctly, can improve the quality 

of the conclusions we draw from our data and 

that of our research altogether. We hope that this 

chapter will promote the adoption of MI and 

ML and will encourage researchers to use these 

procedures in their own research projects. 

APPENDIX 16.1: MULTIPARAMETER 
HYPOTHESIS TESTS IN 
MULTIPLE IMPUTATION 

In research practice, statistical hypotheses often 

involve multiple parameters simultaneously (e.g., 

linear constraints, comparisons of nested models). 

In analyses with complete data, multiparameter 

hypothesis tests are often performed using the 

Wald test or likelihood-ratio test (LRT). To pool 

a series of Wald tests on the basis of a series of 

parameter vectors, Qm, and covariance matrices, Ym, 
Li, Raghunathan, and Rubin (1991) proposed that 

researchers should use the test statistic 

D1 = (QM,-Qof w-1(QM,-Qu) 
K(l+ARiv;) ' 

(16A.1) 

where QM1 and W are the average estimates of 

the parameter vector and its covariance matrix 

(see Equations 16.6 and 16.8), Q0 contains the 

hypothesized values of the parameters under t~e 

null hypothesis, and ARIV 1 is an estimate of the 

average relative increase in variance (ARIV) due to 

nonresponse across parameters (see Enders, 2010). 

The D1 statistic can be used in a similar manner 

as Rubin's rules (1987), that is, it can be used to 

test a set of parameters (or a linear transformation 

thereof) that have an approximately normal 

sampling distribution (e.g., regression 

coefficients). 

It is sometimes difficult to calculate D1, for 

example, because estimates of the covariance 

matrix are unavailable. As an alternative, Li, Meng, 

Raghunathan, and Rubin (1991) proposed that a 

set of Wald-like test statistics, Dm, be pooled as 

follows: 

Missing Data in Multilevel Research 

D
2 
= BK-1 + <M + 1HM -1r 1 ARiv2 

l+ARIV2 ' 

(16A.2) 

where i5 is the average of the Dm, and ARIV 2 is an 

alternative estimate of the ARIV. The Di statistic can 

be used for any quantity that follows a X2-distribution, 

for example, a Wald test of a set of regression 

coefficients (or a linear transformation thereof) or an 

LRT comparing two nested models (see also Snijders 

&: Bosker, 2012). 

As a third option, Meng and Rubin ( 1992) proposed 

a test statistic for pooling a series of LRTs as follows: 

[ 
D1=-----

K(l+ARIVJ' 
(16A.3) 

where the ARIV 1 is another estimate of the average 
relative increase in variance, which includes (a) the 

average LRT statistic evaluated at the actual parameter 
estimates and (b) the average LRT statistic evaluated 

at the average parameter estimates for the two models 
(i). This test statistic can be used in the same manner 

as the LRT, for example, for comparing two nested 

statistical models (see above). 

In general, D1 and D3 tend to be the more reliable 
procedures and should be used when possible. 

However, because software implementations of D1 

and D1 are sometimes not available, D2 may be an 

interesting alternative given its ease of application. 

Even though D2 was optimized to work with a small 
number of imputations (M = 3), results from D2 tend 
to be much more robust when more imputations 
(say, M;;:: 20) are used (Grund, Ludtke,&: Robitzsch, 

2016c; Licht, 2010). Care should be taken when 

large portions of the data are missing (say, more than 
50%) because Di and (to a lesser extent) D3 tend to 

be less robust in these cases. 

APPENDIX 16.2: COMPUTER CODE 
FOR THE EXAMPLE APPLICATION 

Printed below is the computer code used for 
multilevel MI in the data analysis example. 
#***Description of the 'leadership' data set: 
# 

# GRPID: indicator for work groups 
# JOBSAT: job satisfaction (Level 1) 
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# NEGLEAD: ratings on negative leadership 
style (Level 1) 

# WLOAD: workload (Level 1, "low" vs. "high") 
# COHES: group cohesion (Level 2) 

# Multiple imputation is performed with an "empty" 
joint model using jomo. The 

# model of interest is fit using lme4, and the mitml 
package is used for pooling 

# tests and parameters. 

library(lme4) 
library(mitml) 

# set up random number generator 
set.seed(1234) 

# load data 
data(leadership) 

#***Imputation phase: 
# 

# set up "empty" model 
fml <- list(NEGLEAD + JOBSAT + WLOAD - 1 

+ (llGRPID), # Level 1 model 
CO HES - 1) # Level 2 model 

# impute 
imp <- jomoimpute(leadership, formula=fml, 

n.burn=5000, n.iter-500, m=IOO) 

# assess convergence 
summary(imp) # convergence criteria ("Rhat") 
plot(imp) # diagnostic plots 

# create list of completed data sets 
implist <- mitmlComplete(imp, print="all") 

# *** Analysis phase: 
# 

# apply group-mean centering 
imp list <- within(implist, { 

}) 

G.NEGLEAD <- clusterMeans(NEGLEAD,GRPID) 
l.NEGLEAD <- NEGLEAD - G.NEGLEAD 
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# fit model of interest and pool parameter estimates 
fit<- with(implist, lmerQOBSAT - I.NEG LEAD+ 

G.NEGLEAD + WLOAD + COHES + (llGRPID))) 
testEstimates(fit, var.comp= TRUE) 

# test for random slope of leadership style (using D3) 
fit2 <- with(implist, lmerQOBSAT - l.NEGLEAD + 

G.NEGLEAD + WLOAD + COHES + 
(l+l.NEGLEADIGRPID))) 

anova(fit, fit2) 

# test for contextual effect of leadership style 
(using Dl) 

context<- "G.NEGLEAD -1.NEGLEAD" 
testConstraints(fit, constraint=context) 

Printed below is the Mplus syntax that was used for 
ML estimation of the model of interest. 

DATA: 
file = leadership.dat; 

VARIABLE: 
names= GRPID JOBSAT COHES NEGLEAD 

WLOAD; 
usevariables = JOBSAT COHES NEGLEAD WLOAD 

NEGLEADM; 
within = NEGLEAD; 
between = COHES NEGLEADM; 
cluster= GRPID; 
missing= all (-99); 

DEFINE: 
NEGLEADM = cluster_mean (NEGLEAD); 

! calculate group means from the observed data 
center NEGLEAD (groupmean); ! group-mean 

centering 

ANALYSIS: 
type = twolevel; 
estimator = ml; 

MODEL: 
%within% 
JOBSAT on NEGLEAD 

WLOAD (1); ! restrict effect of workload to be 
equal at both levels 

NEGLEAD with WLOAD; ! explanatory variables 
as endogenous, allow covariances 



%between% 
JOBSAT on NEGLEADM COHES 

WLOAD (1); ! restrict effect of workload to be 
equal at both levels 

NEGLEADM with COHES; ! explanatory 
variables as endogenous, allow covariances 

NEGLEADM with WLOAD; 
COHES with WLOAD; 
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