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Multiple imputation is a widely recommended means of addressing the problem of missing data in
psychological research. An often-neglected requirement of this approach is that the imputation model
used to generate the imputed values must be at least as general as the analysis model. For multilevel
designs in which lower level units (e.g., students) are nested within higher level units (e.g., classrooms),
this means that the multilevel structure must be taken into account in the imputation model. In the present
article, we compare different strategies for multiply imputing incomplete multilevel data using mathe-
matical derivations and computer simulations. We show that ignoring the multilevel structure in the
imputation may lead to substantial negative bias in estimates of intraclass correlations as well as biased
estimates of regression coefficients in multilevel models. We also demonstrate that an ad hoc strategy that
includes dummy indicators in the imputation model to represent the multilevel structure may be
problematic under certain conditions (e.g., small groups, low intraclass correlations). Imputation based
on a multivariate linear mixed effects model was the only strategy to produce valid inferences under most
of the conditions investigated in the simulation study. Data from an educational psychology research
project are also used to illustrate the impact of the various multiple imputation strategies.
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The pervasive problem of missing data has received consider-
able attention in psychological research during the last two de-
cades (Enders, 2010; Graham, 2009; Schafer & Graham, 2002; see
also West, 2001). There is consensus in the methodological liter-
ature that modern methods such as multiple imputation (MI) and
model-based maximum likelihood procedures are much more ef-
fective at addressing missing data problems than traditional ap-
proaches such as listwise or pairwise deletion (Carpenter & Ken-
ward, 2013; Little & Rubin, 2002). Although much has been
published recently in the applied missing-data literature about
these modern methods, less attention has been paid to the problem
of missing values in multilevel designs. In such designs, lower
level units (e.g., students, employees; Level 1) are typically nested
within higher level units (e.g., classrooms, working units; Level 2).
Multilevel modeling is a highly recommended statistical technique
for analyzing these data structures, as it accounts for the depen-
dence in the data as well as allowing researchers to estimate

relationships among variables located at different levels (Gold-
stein, 2010; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).

The purpose of this article is to evaluate several strategies for
applying MI to incomplete multilevel data. The basic idea of MI is
to draw a number of replacements for the missing values using the
observed data and an imputation model (Rubin, 1987). One central
feature of MI, however, is that the imputation model must be at
least as general as the model of interest in order to preserve the
relationships among the variables. For example, assume that the
researcher is interested in testing an interaction effect of two
variables in a multiple regression model in the presence of incom-
plete data. In that case, it is crucial that the interaction effect (i.e.,
product term) is also incorporated in the imputation model (e.g.,
Enders, Baraldi, & Cham, 2014; von Hippel, 2009).

Similarly, in the case of incomplete multilevel data, it is impor-
tant to take the multilevel structure of the data into account in the
imputation model in order to ensure valid statistical inferences in
subsequent multilevel analyses (Enders, Mistler, & Keller, 2016).
In the present article, we investigate how MI conducted with a
single-level normal imputation model affects the estimation of
variance components and regression coefficients in a multilevel
analysis. We also discuss a strategy that is based on including
dummy indicator (DI) variables in order to preserve the multilevel
structure in a single-level imputation model. These ad hoc proce-
dures will be compared with a multivariate linear mixed-effects
imputation model that was developed by Schafer (Schafer, 2001;
Schafer & Yucel, 2002).

Our article makes three main contributions to the literature.
First, in contrast to previous research that mostly relied on simu-
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lations to illustrate the problems of not adequately accommodating
the multilevel structure in the imputation model, we derive the
asymptotic bias for the estimators of the intraclass correlation and
the regression coefficients of a multilevel random-intercept model,
when the two ad hoc strategies are used to deal with incomplete
data. Second, we conducted a comprehensive simulation study that
provides a thorough comparison of the ad hoc procedures with the
multivariate linear mixed-effects imputation model, manipulating
more factors in the simulation design than most previous studies.
Third, our focus is on a multilevel random-intercept model in
which the between part of the Level 1 predictor is treated as a
latent variable. This model has been recommended in the meth-
odological literature for assessing the group-level effects of Level
1 predictors in contextual studies (e.g., Croon & van Veldhoven,
2007; Lüdtke et al., 2008; Preacher, Zyphur, & Zhang, 2010; Shin
& Raudenbush, 2010).

The article is organized as follows. We start by briefly describ-
ing the missing data mechanisms as defined by Rubin (1976) and
introducing the basic idea of MI. We then describe the multilevel
random-intercept model and motivate the analysis models we are
interested in. We discuss two ad hoc procedures that have been
used for imputing multilevel missing data and analytically inves-
tigate their asymptotic bias. A discussion of the multivariate linear
mixed effects imputation model follows. We then use simulation
methods to examine different strategies for dealing with incom-
plete multilevel data. Next, an empirical example from educational
psychology is used to illustrate the impact of these strategies on the
estimation of an intraclass correlation. Finally, we offer sugges-
tions for applied researchers and propose directions for further
research.

Missing Data and Multiple Imputation

In his well-known classification of missing data, Rubin (1976)
distinguished three mechanisms. Suppose one has a complete data
matrix, which can be decomposed into observed and unobserved
parts Y � (YO, YM) by an indicator matrix R � (riv) denoting the
missing data such that riv � 1 if the variable v for person i is
observed and riv � 0 if it is missing. If values are missing as a
random sample of the complete hypothetical data, that is, if
P(R|Y) � P(R), the data are missing completely at random
(MCAR). If the missingness depends on other variables but the
data are MCAR when such variables are partialed out, that is, if
P(R|Y) � P(R|YO), the data are missing at random (MAR). This
is in contrast to data that are missing not at random (MNAR),
where missingness is also dependent on the missing part of the
data, that is, P(R|Y) � P(R|YO, YM). Most software implementa-
tions of MI rely on the assumption that missing data are MAR (see
Carpenter & Kenward, 2013, for a discussion of MI under a
MNAR mechanism). This is a reasonable assumption that holds at
least approximately if the observed data provide sufficient infor-
mation about the missing data mechanism (Collins, Schafer, &
Kam, 2001).

The MI procedure consists of three steps (see Enders, 2010, for
a clear exposition). In the imputation phase, m copies of the data
set are generated by filling in replacements for the missing values.
In the analysis phase, the m completed data sets are then analyzed
using standard complete-data methods. In the pooling phase, the

parameter estimates are pooled according to the rules described by
Rubin (1987) for final parameter estimates and inference.

In our discussion of MI strategies for incomplete multilevel
data, we are particularly concerned with the imputation phase. The
key idea is to draw replacements of the missing values from
the conditional distribution P(YM|YO) of the missing data, given
the observed data. In the Bayesian context, this distribution is also
called the posterior predictive distribution of the missing data
given the observed data (Gelman, Carlin, Stern, & Rubin, 2003;
Hoff, 2009). To generate the imputed values, it is necessary to
specify a joint distribution P(YM, YO, �) for the missing and
observed data. In research practice, the multivariate normal distri-
bution with � � (�, �) is often used as an imputation model,
where � is a vector of means and � is a covariance matrix.1

In practice, the posterior predictive distribution of the missing
values P(YM|YO) is difficult to evaluate; Markov chain Monte
Carlo (MCMC) techniques are generally used to draw values from
this distribution. One commonly used MCMC procedure (also
called data augmentation; Tanner & Wong, 1987) uses the follow-
ing stochastic iterative algorithm, which cycles between two con-
secutive steps. At the (t � 1)th iteration with current values (YM

(t),
YO, �(t)), the imputation step (I-step) draws missing values from
the conditional distribution of the missing values given the ob-
served data

YM
(t�1) � P(YM | YO, �(t)). (1)

In the next step, the posterior step (P-step), the completed data
(YM

(t�1), YO) are used to generate new values for the parameter
vector �

�(t�1) � P�� | YO, YM
(t�1)�. (2)

When the algorithm converges, these values can be viewed as
simulated draws from the posterior distribution of the parameters,
given observed and filled-in data. Typically, the initial samples of
the algorithm are discarded (burn-in period) because the initial
draws are affected by the starting values (for a discussion of
assessing convergence in the context of MI, see Schafer & Olsen,
1998; see also Enders, 2010).

The crucial decision for our discussion of MI strategies is the
choice of an imputation model. In the present article, we show that
ignoring the multilevel structure can result in distorted parameter
estimates in subsequent multilevel analyses. In the next section, we
introduce the specific multilevel models we are interested in.

Multilevel Models With Missing Data

In the following, we consider a scenario with two variables X
and Y, where Y has missing values and X is fully observed. More
specifically, we assume a two-level structure with two individual-
level variables Xij and Yij for persons i (i � 1, . . . , nj) in groups
j (j � 1, . . . , K). The variables Xij and Yij are decomposed as
follows (see Snijders & Bosker, 2012, p. 29):

1 Two broad approaches to performing MI can be distinguished. In the
joint modeling approach, a single statistical model is used for incomplete
variables simultaneously. In the sequential (or chained equations) ap-
proach, each variable is imputed in turn using a sequence of models. In the
present article, we focus on the joint modeling approach (see Carpenter &
Kenward, 2013, for a discussion).
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Xij � �X � XB,j � XW,ij, Yij � �Y � YB,j � YW,ij. (3)

In this model, group j has specific main effects XB,j and YB,j for
variables X and Y, and the within-group deviations XW,ij and YW,ij

are associated with individual i. The covariance matrix of X and Y
within and between groups can be written as

�W � � �X
2

�W�X�Y �Y
2 � and �B � � �X

2

�B�X�Y �Y
2 �, (4)

where �W and �B denote the correlation between the individual
deviations �(XW,ij, YW,ij) and the between-groups correlation
�(XB,j, YB,j), respectively. The intraclass correlations �I,X and �I,Y

indicate the proportion of total variance that can be attributed to
between-groups differences and are defined as follows:

�I,X �
�X

2

�X
2 � �X

2 and �I,Y �
�Y

2

�Y
2 � �Y

2 . (5)

The intraclass correlation of a variable provides important in-
formation about the multilevel structure, and its calculation is
usually the first step in analyzing multilevel data. We are interested
in how different strategies of dealing with incomplete multilevel
data affect the estimation of the intraclass correlation of Y.

Furthermore, we are interested in the relationship between X and
Y within and between groups (see Cronbach, 1976). A multilevel
random-intercept model is used, in which the dependent variable Y
is predicted by

Yij � �Y � �W,YXXW,ij � �B,YXXB,j � 	j � εij, (6)

where �Y is the regression intercept, �W,YX is the within-group
(Level 1) regression slope describing the relationship between Y
and X within groups, and �B,YX is the between-groups (Level 2)
regression slope that reflects the relationships between the group
means of Y and X. The group-level residual �j and the individual-
level residual εij are normally distributed with zero means. It
should also be noted that the model in Equation 6 treats the group
mean of the predictor variable X as a latent variable and corrects
the group-level effect �B,YX for the unreliability of the manifest,
observed group mean (e.g., Lüdtke et al., 2008; see also Croon &
van Veldhoven, 2007; Shin & Raudenbush, 2010). This model has
been used to estimate the individual and group-level effects of
Level 1 predictors by researchers in various subdisciplines of
psychology, such as educational psychology (e.g., Dettmers, Trau-
twein, Lüdtke, Kunter, & Baumert, 2010), health psychology (e.g.,
Henry, Stanley, Edwards, Harkabus, & Chapin, 2009), and orga-
nizational psychology (e.g., Walsh, Matthews, Tuller, Parks, &
McDonald, 2010).

Additionally, researchers are often interested in estimating con-
textual effects (Raudenbush & Bryk, 2002). A contextual effect is
present if �B,YX is different from �W,YX, meaning that the relation-
ship at the aggregated level (Level 2) is stronger or weaker than the
relationship at the individual level (Level 1). Contextual effects are
of great interest in educational psychology, for example, where
several researchers have postulated that aggregated school socio-
economic status or mean ability has an effect on student outcomes
(e.g., student achievement or academic achievement), even after
controlling for the individual effects of the constructs at Level 1.
Another important aspect of the existence of a contextual effect
becomes evident when we write the regression coefficient �total,YX

of Y on X in a single-level analysis (i.e., ignoring the clustering of
persons into groups) as a function of �B,YX and �W,YX (Snijders &
Bosker, 2012, p. 30):

�total,YX � �I,X�B,YX � (1 
 �I,X)�W,YX. (7)

Thus, the total regression coefficient �total,YX in the regression
of Y on X is a weighted mean of the within- and between-groups
regression coefficients. If no contextual effect is present (�B,YX �
�W,YX), the within-group and between-groups coefficients are
equal to the total regression coefficient from the single-level
analysis. This relationship will be of relevance for the bias deri-
vations in the next section.

Alternatively, we also investigate the reversed relationship when
X is the outcome variable and Y, the variable with missing values,
is the predictor

Xij � �X � �W,XYYW,ij � �B,XYYB,j � 	j � εij, (8)

where �X is the regression intercept, �W,XY is the within-group
regression slope, and �B,XY is the between-groups regression slope.
The assumptions about the residuals �j and εij are the same as
above. It is well known with regard to multiple regression models
that missing values in the predictor variables can be more prob-
lematic than missing values in the dependent variable (see Car-
penter & Kenward, 2013, p. 24, for a detailed discussion).

Two Ad Hoc Strategies for Dealing With Multilevel
Missing Data

In this section, we discuss two strategies that have been used to
deal with incomplete multilevel data. The first approach uses a
single-level imputation model and ignores the multilevel structure
of the data. The second approach includes a set of DI variables to
represent the multilevel structure in the single-level imputation
model.

Ignoring the Multilevel Structure in the
Imputation Model

In research, the multivariate normal distribution with � � (�, �)
is often selected as an imputation model. To illustrate the multi-
variate normal imputation model and demonstrate how it ignores
the multilevel structure, let us use our scenario with two variables,
X and Y. The variable X is assumed to be fully observed and Y is
missing for a subset of cases. For example, the ith person has the
following data pattern2: Yi(mis) and Xi(mis), where the subscript mis
indicates cases for which Y is missing (see Drechsler, 2015). A
replacement for a missing value on Y would then be generated by
the following equation:

Yi(mis)
(t�1) � �

(t)
� �1

(t)Xi(mis) � εi, (9)

where the residual εi is normally and identically distributed across
persons with constant variance �2(t). The regression parameters

2 For simplicity’s sake, we use an example with two variables and only
a single missing data pattern. A multivariate regression would be required
if there were more than two variables and more than one missing obser-
vation for an individual (for an example, see Hoff, 2009, p. 119; Enders,
2010, p. 200).
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(	(t), �1
(t), �2(t)) are based on posterior draws of �(t) � (�(t), �(t))

from the previous P-step. It is evident that generating imputations
using Equation 9 would not take into account a multilevel structure
and that the dependencies of the data are not adequately repre-
sented in the imputed values. Furthermore, if a contextual effect is
present (i.e., if the relationship between X and Y at the group level
differs from the relationship within groups), the expectation of the
regression coefficient �1 equals the total regression coefficient
�total,YX and will be a weighted average of the within- and
between-groups regression coefficients (see Equation 7), which
does not adequately represent the relationships at the various
analysis levels. Thus, if the model of interest is a multilevel model,
important relationships among the variables may be omitted from
the imputation model, increasing the risk of distorted parameter
estimates in subsequent multilevel analyses that are based on the
filled-in data. In the following, we refer to the MI strategy that
ignores the multilevel structure and specifies a single-level multi-
variate normal distribution for the imputations as the NORM
approach. Previous research has shown with simulation studies
that using the NORM approach for imputing incomplete multilevel
data produces intraclass correlations that underestimate their true
size (e.g., Black, Harel, & McCoach, 2011; Taljaard, Donner, &
Klar, 2008; van Buuren, 2011; see also Snijders & Bosker, 2012).
In the next section, we discuss an ad hoc procedure for incorpo-
rating group effects in a single-level imputation model.

DI Approach

In the DI approach, a set of dummy variables is created to
represent the multilevel structure. The dummy variables are in-
cluded in the single-level imputation model and a separate inter-
cept (or fixed effect) is estimated for each group.3 Group effects
are thereby incorporated in the imputation model. More specifi-
cally, in the DI approach, the K groups are represented by K–1
dummy variables—or K indicator variables when the overall in-
tercept is excluded (see Allison, 2009). To illustrate how imputa-
tions are generated using this strategy, we return to our example
with two variables X and Y. Assuming now that a two-level
structure should be represented in the imputation model by adding
separated intercepts (or fixed effects) for each group, the linear
regression model for imputing Y is written as follows:

Yij(mis)
(t�1) � �

c�1

K

�c
(t)I(c � j) � �1

(t)Xij(mis) � εij, (10)

where I�·� denotes an indicator function that takes on the value 1
when a person belongs to a group and 0 otherwise. The regression
parameters are again based on posterior draws of �(t) � (�(t), �(t))
from the previous P-step. It can be shown that the expectation of
the coefficient �1 in the DI approach is the within-group coeffi-
cient �W,YX, which describes the relationship between X and Y
within groups (see Equation 6). The DI approach has been sup-
ported by Graham (2009; White, Royston, & Wood, 2011; see
Graham, 2012, for a less positive view) when the model of interest
is a random-intercept model and the number of groups is not too
large. Andridge (2011) took a critical look at the DI approach in
the context of cluster randomized trials and showed that it results
in biased standard errors for the regression coefficients (see also
van Buuren, 2011). In a recent evaluation of the DI approach,

Drechsler (2015) demonstrated analytically and through simula-
tions that unless the missing data rate is large (
10%), and/or the
intraclass correlation is small (�.10) and the number of persons
per group is small, the DI method produced approximately unbi-
ased estimates of regression coefficients and their standard errors
if the model of interest is a multilevel random-intercept model.
However, that evaluation considered only the case of missing
values on the dependent variable and complete data on the predic-
tors. The DI approach might be expected to be more problematic
when there are missing values on the predictor variables (see also
Enders et al., 2016, for a critical discussion of the DI approach). In
the next section, we show how the two ad hoc procedures (NORM
and DI approach) can result in biased estimators of variance
components and multilevel regression coefficients for incomplete
multilevel data.

Asymptotic Bias for the Two Ad Hoc MI Strategies

For our scenario with two variables (X and Y), we now inves-
tigate how the treatment of missing values in the NORM and DI
approach affects the parameter estimates in subsequent multilevel
analyses. For the following derivations, it is assumed that the
number of groups approaches infinity. Furthermore, we assume
that the values in Y are MCAR and that the variable X is fully
observed. Without loss of generality, both variables are assumed to
be mean-centered (i.e., zero mean in the population). In each
group, n1 persons have observed values, and n0 � n – n1 values on
Y are missing. For simplicity’s sake, it is assumed that the missing
data rate p0 � n0/n is the same in each group.

We focus on two analysis models. First, we are interested in the
intraclass correlation of Y. Second, we investigate the within- and
between-groups regression coefficients for the regression of Y on
X (i.e., �W,YX and �B,YX; see Equation 6) as well as for the
regression of X on Y (i.e., �W,XY and �B,XY; see Equation 8). Again,
note that we assume that the number of groups approaches infinity
(K ¡ �). The details of the derivations are presented in the
Appendix.

Intraclass Correlation of Y

In the following, we derive the asymptotic bias for the estimator
of the intraclass correlation �I,Y. In a first step, we investigate the
bias for the estimators of the between-groups variance Y

2 and the
within-group variance �Y

2.
NORM approach. If the multilevel structure is ignored in the

imputation model, the asymptotic bias of the estimator of the
between-groups variance Y

2 can be expressed as follows:

Bias��̂Y
2� � 
p0 · �Y

2 · n
n 
 1 · ��B

2(1 
 �I,X)(�B,YX 
 �W,YX)AX

� �1 
 �B
2�Ae	, (11)

where the two terms AX and Ae are introduced to simplify the
expression. They are defined as AX � {2(1 � p0) � (p0 �
1/n)(�total,YX/�B,YX � 1)}/�B,YX and Ae � 2 � 1/n � p0. The first

3 This approach is also sometimes called a fixed effects approach
(Drechsler, 2015). Fixed effects models can be used to assess causal effects
in the presence of unknown group-level confounders (see Allison, 2009).
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part of Equation 11 shows that the bias becomes larger when the
missing data rate per group p0 rises and the between-groups
variance Y

2 increases. The second part (involving the term AX)
shows that if a contextual effect exists in the regression of Y on X
(i.e., �B,YX � �W,YX), the bias depends on both the between-groups
correlation and the intraclass correlation of X. For example, if a
positive contextual effect is present (i.e., �B,YX 
 �W,YX) and the
relationship between Y and X is stronger at the group level than
within groups, the estimator of the between-groups variance is
negatively biased and the magnitude of the between-groups vari-
ance will be underestimated. The third part (involving the term Ae)
indicates that the bias decreases when X and Y are more strongly
correlated at the group level. The relationships among the bias, the
missing data rate (25% and 50%), the group size, and the corre-
lation at the group level (�B � .30 and .60) are also depicted in
Figure 1. As we see, the bias grows larger with a higher missing
data rate and decreases with an increasing correlation at the group
level. Furthermore, increasing group size has almost no effect on
the bias.

Interestingly, the positive bias of the estimator of the within-
group variance �Y

2 is equal to the negative bias of the estimator of
the between-groups variance,

Bias��̂Y
2� � 
Bias��̂Y

2�. (12)

This relationship between the biases of the two estimators can
be explained by the fact that the NORM approach preserves the
total variance of Y. Using Equations 11 and 12, the bias for the
estimator of the intraclass correlation of Y is calculated as follows:

Bias(�̂I,Y) � �I,Y ·
Bias��̂Y

2�
�Y

2 . (13)

As we see, the absolute bias depends on the true size of the
intraclass correlation as well as the bias of the estimator of
the between-groups variance of Y. Thus, it can be concluded
that the bias grows larger with an increase in true intraclass
correlation and a higher missing data rate. Furthermore, in-
creasing the group size has only a minimal effect on the bias.
Even with very large groups, the NORM approach can be
expected to produce substantially negatively biased estimates of
the intraclass correlation.

DI approach. In the DI approach, the multilevel structure is
taken into account by including an indicator variable for each
group in the imputation model. The within-group variance �Y

2 can
be estimated without bias using the DI approach. However, the

Figure 1. Asymptotic bias of the estimator of the between-groups variance Y
2 as a function of the logarithm

of group size, missing data rate in groups, and multiple imputation strategy. Both variables X and Y are
standardized with unit variance. It is assumed that the number of groups approaches infinity. NORM � normal
model imputation; DI � dummy-indicator approach.
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following relationship holds for the estimator of the between-
groups variance Y

2:

Bias��̂Y
2� �

�Y
2

n ·
2p0

1 
 p0
· �1 
 �W

2 �. (14)

As we see, the estimator of the between-groups variance is
positively biased. The bias increases with an increase in the rate of
missing data and as the group sizes decrease (see Figure 1). At the
same time, the absolute bias also increases when the within-group
variance grows larger. An intuitive explanation for the positively
biased estimator of the between-groups variance is that the ob-
served group means are an unreliable measure of the true group
means when the group size is small and the within-group variance
is large (Bliese, 2000). Thus, the DI approach, which estimates a
separate intercept for each group, artificially inflates the true
variation between groups. Graham (2012, p. 136) argues that the
“dummy-coding strategy overcompensates” for the group struc-
ture. The bias also decreases when the within-group correlation
(�W) between Y and the fully observed variable X increases.

The positively biased estimator of the between-groups variance
also affects the bias for the estimator of the intraclass correlation:

Bias(�̂I,Y) � (1 
 �I,Y)2 · 1
n ·

2p0

1 
 p0
· �1 
 �W

2 �. (15)

The bias for the intraclass correlation is positive, and a larger
intraclass correlation as well as larger groups lead to a smaller
absolute bias. As expected, the fraction of missing data within a
group has a strong positive effect on the bias. Again, the bias
decreases when the within-group correlation between X and Y
increases.

Within- and Between-Group Regression Coefficients

In the following section, we investigate the asymptotic bias for
the within- and between-groups regression coefficients that are
estimated by a multilevel regression of Y on X (�W,YX and �B,YX)
and of X on Y (�W,XY and �B,XY). As the estimators of these
coefficients involve the within- and between-groups covariance of
X and Y, we also investigate the estimator of the within-group
covariance (�W,XY) and between-groups covariance (�B,XY).

NORM approach. If the multilevel structure is ignored in the
imputation model, the asymptotic bias of the estimator of the
within-group covariance �W,XY can be expressed as follows:

Bias(�̂W,XY) � p0 · �I,X · (�B,YX 
 �W,YX) · �X
2 . (16)

It is apparent that the bias depends on the rate of missing data as
well as on the intraclass correlation and the within-group variance
of X. More importantly, the estimator of the within-group covari-
ance is only biased if a contextual effect exists in the population
(i.e., �B,YX � �W,YX). In this case �total,XY is different from �B,XY

and �W,XY (see Equation 7) and the direction of the bias depends
on whether a positive (i.e., �B,YX 
 �W,YX) or a negative (i.e.,
�B,YX � �W,YX) contextual effect of X on Y exists. In the case of a
contextual effect in the regression of Y on X, therefore, the esti-
mator of the within-group coefficient �W,YX is biased in the NORM
approach:

Bias(�̂W,YX) � p0 · �I,X · (�B,YX 
 �W,YX). (17)

Similarly, the bias of the estimator of the within-group coeffi-
cient �W,XY in the regression of X on Y (i.e., when the predictor Y
is MCAR) is given by

Bias(�̂W,XY) �
Bias(�̂W,XY) 
 �W,XYBias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (18)

As we see, the bias depends on the biases of the estimator of the
within-group covariance (see Equation 16) and the estimator of the
within-group variance of Y (see Equation 12).

The following relationship holds for the bias of the estimator of
the between-groups covariance:

Bias(�̂B,XY) � 
p0 · (1 
 �I,X) · (�B,YX 
 �W,YX) · �X
2 . (19)

This relationship indicates that the bias depends on the fraction
of missing data as well as on the intraclass correlation and the
between-groups variance of X. Again, the presence of a contextual
effect in the population is crucial for the existence and direction of
the bias. For example, in case of a positive contextual effect, the
difference �B,YX – �W,YX is positive and the absolute magnitude of
the between-groups covariance will be underestimated. If the es-
timator of the between-groups covariance is biased, the estimator
of the between-groups regression coefficient �B,YX would also be
biased:

Bias(�̂B,YX) � 
p0 · (1 
 �I,X) · (�B,YX 
 �W,YX). (20)

Based on Equations 11 and 19, the bias of the estimator for the
between-groups regression coefficient �B,XY can be written as
follows:

Bias(�̂B,XY) �
Bias(�̂B,XY) 
 �B,XYBias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (21)

As we see, the bias depends on the bias of the estimator of the
between-groups covariance and the estimator of the between-
groups variance of Y. If no contextual effect is present, the bias
depends primarily on the bias of the estimator for the between-
groups variance because Bias(�̂B,XY) � 0. Figure 2 shows that the
bias grows larger with a higher missing data rate, and increasing
the group size has only a very modest effect on the bias. However,
raising the between-groups correlation (from .30 to .60) reduces
the bias of the estimator of the between-groups coefficient. Inter-
estingly, this positive effect of the larger between-groups correla-
tion outweighs the bias in estimating the between-groups covari-
ance that is introduced by the presence of a contextual effect.
Overall, Equation 21 indicates that in the case of missing data in
the predictor variable, the bias of the estimator of the between-
groups regression in the NORM approach is a function of several
different aspects of the multilevel structure of the data.

DI approach. Using the DI approach, both the within-group
covariance �W,XY and the between-groups covariance �B,XY can be
estimated without bias. Thus, the DI approach provides unbiased
estimators of the within-group regression coefficient �W,YX and the
between-groups regression �B,YX, as these two estimators are
based on the within- and between-groups variance of the fully
observed variable X (i.e., �X

2 and X
2) and the within- and between-

groups covariances. In addition, the estimator of the within-group
regression coefficient �W,XY is unbiased because the within-group
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variance �Y
2 is also estimated without bias using the DI approach.

However, the estimator of the between-groups regression coeffi-
cient �B,XY in the regression of X on Y is biased:

Bias(�̂B,XY) � 
�B,XY ·
Bias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (22)

It is evident that the bias becomes stronger when the bias of the
estimator of the between-groups variance of Y increases. The
relationship indicates that with missing values on the predictor
variable, a positive between-groups regression coefficient
(�B,XY 
 0) will be underestimated when the DI approach is used,
particularly with small groups and a low ICC of the predictor Y
(see Figure 2).

Overall, an examination of the asymptotic bias (i.e., the number
of groups approaches infinity) for the two MI strategies showed
that under the assumption of MCAR, the estimators of the
between-groups variance and also of the intraclass correlation can
be dramatically biased in certain data configurations. When the
true intraclass correlation is not small, ignoring the multilevel

structure (NORM) can be problematic, particularly when the frac-
tion of missing data is large. Additionally, in the NORM approach,
all four estimators of regression coefficients are biased, and the
magnitude and direction of the bias are a function of several
different aspects of the multilevel structure. For the DI approach,
the bias for the estimator of the between-groups variance ap-
proaches zero when the group size increases and/or the true intra-
class correlation is large. This is because the DI approach relies on
the information in the observed group means to approximate the
true group effects of the multilevel structure. Furthermore, in the
DI approach, only the estimator of the between-groups coefficient
of the regression of X on Y is biased. In the next section, we present
an imputation strategy that directly incorporates the true group
effects and is based on a multivariate mixed effects model.

Multivariate Mixed Effects Imputation Model

A multivariate linear mixed effects model for imputing incom-
plete multilevel data has been developed by Schafer (2001; Scha-
fer & Yucel, 2002). This model is used in the R package pan

Figure 2. Asymptotic bias of the estimator of the between-groups coefficient �B,XY as a function of the size of
the between-groups variance of Y, the between-groups correlation, the logarithm of group size, missing data rate
in groups, and the multiple imputation strategy. Both variables X and Y are standardized with unit variance. It
is assumed that the number of groups approaches infinity. NORM � normal model imputation; DI �
dummy-indicator approach.
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(Schafer & Zhao, 2013), which several authors have identified as
the method of choice for dealing with multilevel missing data
(Andridge, 2011; Graham, 2012). In its general form, the model is
written as

Yij � Xij� � Zijbj � �ij, (23)

where Yij is a (1 � r) vector of outcome variables for person i in
group j, and Xij and Zij are (1 � p) and (1 � q) vectors of covariate
values (each containing a one for an intercept), � is a (p � r)
matrix of regression coefficients, bj is a (q � r) matrix of random
effects, and �ij is a (1 � r) vector of residuals. In most cases, the
covariates in Zij, which are allowed to have randomly varying
effects across groups, are a subset of the values in Xij (p � q). The
random effects matrix bj is assumed to follow a normal distribu-
tion with mean zero and covariance matrix �, and to be indepen-
dently and identically distributed across groups. The residual vec-
tor �ij is independently and normally distributed across persons
with mean zero and covariance matrix �.

A limitation of the imputation model in Equation 23 is that only
completely observed covariates can be included in Xij and Zij.
However, as the present study is interested only in random-
intercept models, we simplify the right-hand side of the multivar-
iate mixed effects model and write the model as an “empty model”
without covariates:

Yij � � � YB,j � YW,ij, (24)

where � is now a (1 � r) vector of means, YB,j is a (1 � r) vector
of random effects between groups, and YW,ij is a (1 � r) vector of
residuals within groups. The model is referred to by Hox (2010) as
a multivariate multilevel model. It can also be interpreted as a
variance decomposition model that decomposes the multivariate
outcome Yij into between-groups and within-group parts YB,j and
YW,ij (Cronbach, 1976). We refer to the MI strategy that performs
MIs based on this model as the PAN approach. The PAN approach
is similar to a two-level imputation model that was proposed by
Asparouhov and Muthén (2010) and is implemented in the soft-
ware Mplus (Muthén & Muthén, 1998-2010; see H1 imputation
model). The approach proposed by Asparouhov and Muthén
(2010) has the further flexibility to generate imputations for Level
2 variables and categorical variables with missing values (see
Enders et al., 2016).4

To illustrate the PAN approach, we use our example with two
variables X and Y, and conclude that

(Xij(mis), Yij(mis)) � (�X, �Y) � (XB,j, YB,j) � (XW,ij, YW,ij),

(25)

where the random effects between and within groups are normally
distributed as follows:

(XB,j, YB,j) � N(0, �B), (XW,ij, YW,ij) � N(0, �W), (26)

where �B and �W denote the between-groups and within-group
covariance matrices. The algorithm for the PAN approach includes
the random-effects step (RE-step) in addition to the I-step and
P-step (Schafer, 2001; Schafer & Yucel, 2002). We again use a
person i in group j with a missing value on Y and observations on
X to illustrate the imputation of missing values in the I-step. In the
(t�1) iteration of the RE-step, the random effects (XB,j

(t�1),YB,j
(t�1)) are

drawn from an appropriate multivariate normal distribution (e.g.,

Raudenbush & Bryk, 2002) that depends on values for the missing
data and the parameters �(t) � (�(t), �B

(t), �W
(t)) from the previous I-

and P-steps.
Based on the random effects, the within-group deviations are

then calculated as follows:

XW,ij
(t�1) � Xij(mis) 
 �X

(t) 
 XB,j
(t�1), (27)

where XW,ij is a within-group deviation for a person i in group j
who has a missing value on Y. In the I-step, an imputation for Y is
then generated using a multilevel regression model

Yij(mis)
(t�1) � �Y

(t�1) � �1
(t�1)XW,ij

(t�1) � YB,j
(t�1) � εij, (28)

where the residual εij is normally distributed across persons with
constant variance �2(t�1). The parameters (�y

(t�1), �1
(t�1), �2(t�1))

are based on posterior draws of the parameters �(t�1) � (�(t�1),
�B

(t�1), �W
(t�1)) from appropriate posterior distributions in the P-step

(Schafer & Yucel, 2002). To demonstrate that the imputation
model also takes into account the relationship among the variables
between groups, we could rewrite Equation 28 (omitting index t)
and replace YB,j by �2XB,j � uj, where uj is the part of YB,j that is
not explained by XB,j, and �2 describes the corresponding between-
groups relation: Yij(mis) � �Y � �1XW,ij � �2XB,j � uj � εij. We
now see that in the DI approach in Equation 10, the true group
effects �2XB,j � uj are approximated by the separate intercepts (or
fixed effects), whereas the NORM approach in Equation 9 com-
pletely ignores the group effects. Furthermore, the expectations of
�1 and �2 correspond to the within- and between-groups regres-
sion coefficients �W,YX and �B,YX in Equation 6, indicating that the
empty model of the PAN approach (see Equation 24) adequately
preserves the relationships within and between groups.

Simulation Study

We conducted a computer simulation to evaluate the statistical
behavior of the three MI strategies (NORM, DI, and PAN) for
dealing with incomplete multilevel data. The simulation study was
designed to generate data that resembled data structures found in
typical applications of multilevel analysis in psychological re-
search (e.g., Level 1 individuals are nested within Level 2 units
such as working groups or school classes). We also included
listwise deletion, as this is still frequently used in research (Jelicić,
Phelps, & Lerner, 2009; Peugh & Enders, 2004). The data-
generating population model was a simple bivariate model with
two normally distributed variables X and Y at Level 1 and Level 2.
Missing values were limited to the variable Y, and X was assumed
to be fully observed. We focused on two analysis models and on
how the performance of their parameter estimates was influenced
by the different MI strategies. First, we were interested in the
intraclass correlation of Y that is routinely reported for multilevel
data. Second, we were interested in a multilevel random-intercept
model with latent group means (see Equation 6), which is often
used to assess the relationship between two variables X and Y
within and between groups. We investigated how the three MI strat-
egies influenced estimation of the within-group and between-groups

4 For selected conditions of our simulation study, we compared the
Mplus H1 imputation with the PAN approach. Both approaches yielded
almost identical results.
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regression coefficient in two scenarios: (a) when missing values occur
only on the predictor variable (i.e., Y is the predictor variable and X is
the dependent variable), and (b) when missing values occur only on
the outcome variable (i.e., X is the predictor variable and Y is the
dependent variable). Given the results from our mathematical deriva-
tions, our main focus is on the scenario when missing values occur on
the predictor variable, particularly for estimating the between-groups
regression coefficient.

Simulation Model and Conditions

Data were simulated based on a population with two standard-
ized, bivariate, normally distributed variables X and Y (see Equa-
tions 3 and 4). The following population parameters were manip-
ulated: the number of Level 2 groups, the number of observations
per Level 2 group, the intraclass correlations of X and Y, and the
correlation between X and Y.

Number of groups. The number of Level 2 groups was set to
K � 50 and 150. Although there are studies involving fewer than
50 groups, a sample size of 50 is commonly found in educational
and organizational psychology (e.g., Maas & Hox, 2005; Mathieu,
Aguinis, Culpepper, & Chen, 2012). However, because of the
growing number of large-scale studies in the field, a condition with
larger samples was also included.

Group size. The number of observations per Level 2 group
was set to n � 5, 15, and 30. A group size of 5 is normal in
small-group research, where multilevel modeling is also frequently
applied (see Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). Group
sizes of 15 and 30 are typical of educational psychology research
on class or school characteristics.

Intraclass correlation of X and Y. The intraclass correlations
of X and Y (i.e., the amount of between-groups variance) were both
varied and set to �I,X � .10 and .30, and �I,Y � .10. and .30.
Intraclass correlations rarely take on values greater than .30 in
educational and organizational research (Bliese, 2000; Hedges &
Hedberg, 2007). As the total variance of X and Y was assumed to
be 1, the values of the intraclass correlations are equal to the
between-groups variances of X and Y.

Correlation between X and Y. The correlation between X and
Y at the group level �B was set to .35 and .60, whereas the
correlation of the individual deviations �W was held constant at
.35. The idea was to select conditions with medium-sized and large
correlations in the sense of Cohen’s (1988) classification. In ad-
dition, studies using multilevel data often show stronger correla-
tions at the group-level compared with the individual level (see
Ostroff, 1993), and we also expected that varying the between-
groups correlation would be of importance. Given the bivariate
two-level structure in Equation 4, the within- and between-groups
correlations together with the intraclass correlations of X and Y
completely determine the value of the regression coefficients
within-group (i.e., �W,YX and �W,XY) and between-groups (i.e.,
�B,YX and �B,XY). For example, in the condition with �I,X � .10,
�I,Y � .30, and �B � .60, the between-groups coefficient �B,XY in
the regression of X on Y is (�I,X/�I,Y)1/2 · �B � (.10/.30)1/2 · .60 �
.346. In addition, the value of the corresponding within-group
coefficient �W,XY is (1 � �I,X)1/2/(1 � �I,Y)1/2 · �W � (.90/.70)1/2 ·
.35 � .397.

Missing Data Mechanism

For each simulated data set, missing values on Y were generated
using two different missing data mechanisms (MCAR and MAR).
More specifically, missing values were imposed on Y by defining
a normally distributed response tendency rij

�, where an individual
case on Y is missing if rij

� 
 0. The probability of missingness on
Y was modeled to be dependent on the within-group and between-
groups portions of X by specifying the following relationship:

rij
� � � � XB,j � XW,ij � εij, (29)

where 	 is a quantile of the standard normal distribution based on
a missing data probability (i.e., 	 � �0.67 for the condition 25%
missing data on Y, and 	 � 0 for 50%), and � is used to control the
missing data mechanism. The residual variance is set to Var(εij) �
1 � �2. Note that specifying the same value of � for the within and
between effects of X on Y eliminates any contextual effects of X on
the missingness of Y. In order for Y to be MCAR, we set � � 0,
and for the two MAR conditions, we set � � 0.4 or � � 0.8. The
missing data rate was set to 25% and 50%. We decided to include
such an extreme missing data condition. Missing data rates of up
to 50% are common in the planned missingness designs that are
used in educational research (see also our real-data example in the
next section). However, our main focus was on the 25% missing
data condition.

Missing Data Treatment

The software mice (van Buuren & Groothuis-Oudshoorn, 2011)
was used to implement the two ad hoc procedures (NORM and
DI). For the NORM approach, the “norm” method was specified in
order to impute Y. The grouping variables were not included in the
imputation model, thus ignoring the multilevel structure of the
data. Through use of the “norm” method, the missing values were
imputed assuming a normal distribution given the completely
observed X. For the DI approach, a set of K–1 dummy variables
was created and included in the imputation model. This resulted in
the estimation of a separate intercept for each group to represent
the multilevel structure.5 Schafer and Olsen (1998) suggested that
m � 10 imputations are sufficient for most practical purposes.
Following this recommendation, we generated for all ad hoc ap-
proaches m � 10 imputations for each data set (but see Bodner,
2008). We used the default value of 5 iterations in the software
mice for each imputation. However, only a single iteration would
suffice because the case of only one missing variable is a special
case of a monotone missing data pattern (see Carpenter & Ken-
ward, 2013, p. 77). The PAN approach is implemented in the R
package pan (Schafer & Zhao, 2013). Variables X and Y were both
specified as responses in the pan model to allow for variance and
covariance at Level 1 and Level 2 (see Equation 24). The least
informative inverse-Wishart priors were chosen for the covariance

5 Note that even though the mice package was used for implementing the
NORM and DI approach, these approaches can still be considered as joint
modeling. This is because for a single missing data pattern (or monotone
patterns of missing data in general), the conditional imputations generated
by mice are equivalent to imputations from the joint model with noninfor-
mative priors (Raghunathan, Lepkowski, Hoewyk, & Solenberger, 2001;
see also Schafer, 1997).
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matrices at Level 1 and Level 2, that is, �W � W�1(I2, 2) and
�B � W�1(I2, 2). For the PAN approach, convergence behavior
was assessed by inspecting the autocorrelation functions and trace
plots of the different parameters. Applying the two criteria to a
subsample of the replications of the simulation design, we con-
cluded that the MCMC chains had reached convergence after the
first 200 iterations. We let the software pan perform 200 burn-in
iterations before drawing one imputed dataset for each 50 itera-
tions, leading to m � 10 imputed data sets.

Analysis Models and Outcome Variables

For each of the 2 � 3 � 2 � 2 � 2 � 3 � 2 � 288 conditions
(five factors for the population model, two factors for the missing
data mechanism), 1,000 simulated data sets were generated for
each condition, which allowed for a precise estimation of bias,
root mean square error (RMSE), and coverage rate. After im-
puting the missing values on Y using the three different MI
strategies, all of the statistical analyses were conducted in
Mplus 6 (Muthén & Muthén, 1998 –2010). We specified three
different analysis models. First, the intraclass correlation of Y
(see Equation 5) was estimated by specifying an empty two-
level model with Y as the outcome variable. Second, a multi-
level random-intercept model was specified in which Y was the
predictor variable and X was the dependent variable (see Equa-
tion 8). This model produced estimates of the regression coef-
ficients �W,XY and �B,XY under the scenario that missing values
occur in the predictor variable. Third, we specified a multilevel
random-intercept model with X as the predictor variable and Y
as the dependent variable to estimate the within- and between-
groups regression coefficients �W,YX and �B,YX (see Equation
6). Note that in both multilevel random-intercept models the
group means of the predictor variable were treated as a latent
variable (see Lüdtke et al., 2008).

We used bias, RMSE, and confidence interval coverage to
evaluate the missing data strategies. The bias was estimated by
calculating the difference between the mean parameter estimate
from each design cell and the true population parameter. The
overall accuracy of the parameter estimates was assessed using
the RMSE, which was computed by taking the square root of the
mean square difference of the estimate and the true parameter.
When a parameter estimate is biased, the RMSE combines bias
and variability (i.e., sampling variance) into an overall measure
of accuracy. Furthermore, we analyzed the accuracy of the
standard errors for the regression coefficients by determining
the observed coverage of the 95% confidence interval (CI).
Coverage was given a value of 1 if the true value was included
in the confidence interval and a value of 0 if the true value was
outside the confidence interval. To provide an additional bench-
mark for the results from the different MI strategies, we also
show the results from the analysis of the complete data sets, that
is, the results obtained from the data sets before the missing
values have been induced.

Results

Intraclass Correlation of Y

Table 1 shows the estimated bias in the parameter estimates for
the intraclass correlation of Y (�I,Y) for selected conditions of the

simulation (number of groups is K � 150, missing rate � 25%,
and MCAR and MAR; see the online supplemental materials for
detailed information about all conditions). Using the PAN ap-
proach as an imputation model produced approximately unbiased
estimates of the intraclass correlation. Only when the number of
groups was small (n � 5) was there a slight tendency to overes-
timate the size of the intraclass correlation. In the worst condition
(n � 5, �I,X � .30, �I,Y � .10, � � 0), the estimated bias was 0.015,
which is a relative percentage bias of 15%, given that the true
intraclass correlation was .10. However, with larger group sizes
(n � 15), the relative percentage bias was very small and ranged
from �1.3% to 3.5%.

The intraclass correlation estimates of the NORM approach
were negatively biased, and the estimates of the DI approach were
positively biased. The magnitude of the absolute estimated bias for
the NORM approach strongly depended on the size of the true
intraclass correlation. It was much more pronounced for a large
intraclass correlation (�I,Y � .30), with values ranging from �0.127
to �0.096, than for a small intraclass correlation (�I,Y � .10), with
values ranging from �0.041 to �0.026. In contrast, the DI ap-
proach yielded less bias when the true intraclass correlation of Y
was large, particularly for smaller groups. For example, when the
group size was held at n � 5, the estimated bias ranged from 0.112
to 0.129 for a small intraclass correlation, and from 0.064 to 0.081
for a large intraclass correlation. However, with large groups (n �
30), the DI approach produced only slightly biased estimates of the
intraclass correlation, with values ranging from 0.006 to 0.129.
Listwise deletion provided approximately unbiased estimates
when data were MCAR, but was negatively biased when the
missingness in Y depended on X.

The main findings for the estimated bias of the intraclass cor-
relation are also depicted in Figure 3. Differences between the
approaches are particularly pronounced when the number of
groups was small (n � 5). It is also apparent that a large group size
and/or a high intraclass correlation of Y are needed to obtain
acceptable estimates for the intraclass correlation with the DI
approach. This reflects the fact that the observed group means
yield more reliable estimates of the true group means when the
group size is large and the intraclass correlation of Y is high (e.g.,
Bliese, 2000).

Next, we assessed the overall accuracy of the parameter esti-
mates by estimating the RMSE. As expected, using the PAN
approach resulted in the lowest estimated RMSE across most of
the conditions. Overall, the differences and trends in the estimated
RMSE values of the MI approaches were very similar to the results
for bias.

Multilevel Regression of X on Y

Between-groups regression. The estimated bias for the esti-
mator of the between-groups regression coefficient of X on
Y(�B,XY) is presented in Table 2. Again, only selected conditions
are presented (K � 150, missing rate 25%, MCAR, and strong
MAR). The PAN approach provided approximately unbiased es-
timates of the between-groups regression coefficient, except in
conditions with a small number of groups. In the worst condition
depicted in Table 2 (�I,X � .30, �I,Y � .10, �B � .60), the estimated
bias was �0.109 (corresponding to a relative percentage bias
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of �10.5%).6 However, with larger group sizes (n � 15), the
negative bias disappeared, with values ranging from �0.040 to
0.005. The NORM approach, which ignores the multilevel struc-
ture, showed a positive bias and tended to overestimate the size of
the true between-groups regression coefficient (range � 0.093 to
0.587). In contrast, the DI approach was negatively biased and
underestimated the true value of the between-groups regression
coefficient (range � �0.649 to �0.009). The magnitude of the
estimated bias was particularly pronounced for a small group
size (n � 5) and a low intraclass correlation (�I,Y � .10). As the
true value of the between-groups coefficient depends on the
intraclass correlations of both X and Y, the effect of group size
and the intraclass correlation can best be seen when comparing
the conditions with the same true value of the between-groups
regression coefficient in Table 2 (e.g., upper half; true value �
.350). It is apparent that the estimated bias is strongly reduced
when the group size and/or the intraclass correlation of Y

increase. Listwise deletion provided estimates that were
strongly negatively biased under the MAR conditions, but were

6 The estimates produced by the PAN approach were slightly negatively
biased in conditions with a small group size (n � 5) and a relatively low
intraclass correlation of the predictor (�I,Y � .10). We believe that this finding
was due to the standard least-informative prior for the covariance matrix of the
random effects, which induces bias into small variance components (see also
Grund, Lüdtke, & Robitzsch, 2016). The software pan uses an inverse-Wishart
prior distribution for the random effects that implies, in the case of two
variables, a prior distribution for the variances that is loosely centered on a
value of .50. With small group sizes and a relatively small true variance
component, this could result in slightly positively biased estimates of variance
components, which in turn would yield negatively biased between-groups
regression coefficients. This explanation is also consistent with the finding that
the estimator of the intraclass correlation of Y in the PAN approach is also
slightly positively biased in conditions with a small number of groups and a
low intraclass correlation of Y. Note that the complete data analysis produced
approximately unbiased estimates in these conditions.

Table 1
Bias of the Estimator of the Intraclass Correlation of Y for a Large Number of Groups (K � 150) and 25% Missing Data

Conditions

MCAR (� � 0) MAR (� � .8)

NORM DI PAN CD LD NORM DI PAN CD LD

�I,X � .10, �I,Y � .10
�B � .35

n � 5 �.041 .112 .009 �.003 �.003 �.040 .118 .010 �.003 �.005
n � 15 �.039 .032 .002 �.001 �.001 �.039 .033 .001 �.001 �.004
n � 30 �.038 .017 .001 �.001 �.001 �.039 .016 .000 �.001 �.003

�B � .60
n � 5 �.034 .115 .014 .000 .000 �.036 .118 .011 �.001 �.010
n � 15 �.035 .032 .003 �.001 �.001 �.035 .034 .002 �.001 �.009
n � 30 �.035 .015 .001 �.001 �.001 �.035 .016 .001 �.001 �.009

�I,X � .10, �I,Y � .30

�B � .35
n � 5 �.124 .070 �.001 �.002 �.002 �.124 .070 �.004 �.004 �.005
n � 15 �.124 .018 �.002 �.002 �.003 �.123 .019 �.003 �.003 �.003
n � 30 �.124 .008 �.002 �.002 �.002 �.123 .008 �.002 �.003 �.002

�B � .60
n � 5 �.118 .069 �.001 �.001 �.001 �.117 .070 �.004 �.003 �.011
n � 15 �.116 .019 �.001 �.003 �.003 �.116 .019 �.002 �.002 �.009
n � 30 �.116 .009 �.001 �.002 �.002 �.116 .007 �.003 �.004 �.009

�I,X � .30, �I,Y � .10

�B � .35
n � 5 �.035 .114 .012 �.001 �.002 �.033 .129 .011 �.001 �.007
n � 15 �.034 .033 .002 �.001 �.001 �.033 .040 .002 �.001 �.007
n � 30 �.034 .016 .001 �.001 .000 �.032 .019 .001 �.001 �.007

�B � .60
n � 5 �.027 .115 .015 �.001 �.002 �.026 .128 .014 �.001 �.017
n � 15 �.027 .032 .003 �.002 �.002 �.026 .040 .003 �.001 �.016
n � 30 �.027 .015 .001 �.001 �.001 �.026 .017 .000 �.001 �.015

�I,X � .30, �I,Y � .30

�B � .35
n � 5 �.120 .064 �.007 �.004 �.006 �.111 .081 .000 .000 �.006
n � 15 �.117 .017 �.003 �.004 �.004 �.111 .023 �.001 �.003 �.009
n � 30 �.118 .006 �.004 �.003 �.003 �.112 .009 �.003 �.003 �.008

�B � .60
n � 5 �.099 .071 .003 �.002 �.002 �.098 .076 �.003 �.004 �.024
n � 15 �.100 .019 �.001 �.002 �.002 �.096 .023 �.001 �.002 �.019
n � 30 �.101 .008 �.002 �.003 �.003 �.097 .010 �.002 �.003 �.020

Note. Biases larger than 10% are written in bold. n � group size; �I,X � intraclass correlation of X; �I,Y � intraclass correlation of Y; �B � correlation
at Level 2; � � effect of X on missingness; NORM � normal model imputation; DI � dummy-indicator approach; PAN � two-level imputation; CD �
complete data; LD � listwise deletion.
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only slightly biased when the data were MCAR. The main
findings are summarized in Figure 4.

In the next step, we estimated the RMSE for the between-groups
regression coefficient. Figure 5 shows the main findings when the
data were MAR. As we see, the PAN approach outperformed the
other approaches and the NORM approach showed the largest
estimated RMSE across the conditions. In conditions with a large
correlation at Level 2 (�B � .30), the performance of the DI
approach improved considerably with larger group sizes and a
large intraclass correlation of Y. It is also apparent that listwise
deletion, which provides substantially biased estimates under
MAR, showed the second largest RMSE of the compared methods.

The accuracy of the standard errors produced by the various MI
strategies was evaluated in terms of the coverage rate, which was
assessed using the 95% CIs. As shown in Figure 6, the coverage
rate for the DI approach was not accurate and mirrored the pattern
for the estimated bias. The probability that the CIs cover the true
value was higher for large groups (n � 15) than for small groups
(n � 5). In contrast, the coverage rate for the NORM approach
dropped substantially when the group size increased, although the
bias for the NORM approach was only slightly influenced by the
group size. It is also evident that the coverage rates produced by
listwise deletion were close to the nominal value when data were
MCAR, but were poor in MAR conditions. Overall, the PAN
approach provided acceptable coverage rates, with values ranging
from 89.5 to 96.5. However, it should be added that with a high
rate of missing data (50%), there were a few conditions in which
the coverage values produced by the PAN approach were not
acceptable. This was the case when the number of groups was
small, the intraclass correlation of Y was low, the intraclass cor-
relation of X was large, the correlation at Level 2 was large, and
the number of groups was K � 150. In these conditions the
coverage rates were 80.3, 80.3, and 82.6.

In addition to examining coverage rates, we looked at whether
the estimated standard errors correctly describe the sampling dis-
tribution of the point estimates. Figure 7 shows box plots of the
ratio of the estimated standard errors and the empirical standard
deviation of the estimates for the between-groups regression co-
efficient in selected conditions. With low intraclass correlations
(�I,X � �I,Y � .10) and small groups (n � 5), the individual
standard errors were sometimes a poor estimate of the sampling
variability of the between-groups regression coefficient—a result
that is most pronounced for NORM and least pronounced for the
DI approach. In general, however, the median standard errors for
the between-groups regression coefficient were very close to the
observed standard deviation of the point estimates.

Within-group regression. For the within-group coefficient of
the regression of X on Y, we found no substantial estimated bias for
the DI or PAN approach (�W,XY). For example, the estimated bias
observed for the PAN approach ranged from �0.008 to 0.008,
which represents 2.2% downward and upward bias. Both the
NORM approach and listwise deletion had a tendency to under-
estimate the true within-group coefficient. The largest absolute bias
was �0.057 (or �14.4%) for the NORM approach (range � �0.057
to �0.004), and �0.102 (or �25.8%) for listwise deletion
(range � �0.102 to 0.004). The NORM approach was particularly
biased when the intraclass correlation of Y was large with relative
bias values ranging from �14.8% to �7.1%, whereas listwise
deletion was especially biased when data were MAR
(range � �26.2% to �19.6%). The estimated RMSE values were
lowest overall for the DI and PAN approaches. For the NORM
approach and listwise deletion, the RMSE was usually larger in
conditions where estimates were biased. Coverage of the 95% CIs
was satisfactory across all conditions for the DI approach (range �
91.9 to 96.6) and the PAN approach (range � 92.4 to 96.3). As
was expected from our findings regarding bias, the NORM ap-

Figure 3. Bias of the estimator of the intraclass correlation of Y (�I,Y � .10 and .30) for varying group size (n)
and effect of X on missingness (�). The intraclass correlation of X was fixed at �I,X � .30, the correlation at Level
2 at �B � .60, the number of groups at K � 150, and the missing data probability at 25%. NORM � normal
model imputation; DI � dummy-indicator approach; PAN � two-level imputation; CD � complete data; LD �
listwise deletion.
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proach had low coverage rates when the intraclass correlation of Y
was large (range � 10.8 to 94.7), whereas listwise deletion pro-
vided unsatisfactory coverage when data were MAR (range � 0 to
80.8).

Multilevel Regression of Y on X

We also investigated an analysis model in which Y was the depen-
dent and X the predictor variable. In this case, missing values occurred
only on the dependent variable. The DI and the PAN approach as well
as listwise deletion produced approximately unbiased estimators of
the within-group regression coefficient �W,YX. For example, the esti-
mated bias for the PAN approach ranged from �0.014 to 0.004, or
from �3.5% to 1.1% in relative terms. Furthermore, the PAN ap-
proach led to approximately unbiased estimates of the between-
groups coefficient across all conditions, with absolute bias ranging
from �0.052 to 0.130 (or �14.7% to 12.5%). The moderate bias
exhibited by PAN, however, was limited to conditions with small
groups (n � 5) and vanished as soon as the groups grew larger (n �

15; range �0.024 to 0.035, or �6.8% to 3.4%). In contrast, the
NORM approach produced estimates of the between-groups coeffi-
cient that were often biased, with absolute bias ranging from �0.163
to 0.037 (or �15.7% to 18.2%). The DI approach had a tendency to
overestimate the between-groups coefficient, with bias ranging
from �0.030 to 0.267 (or �8.7% to 25.7%). However, this substan-
tial positive bias was only observed for small group sizes and was
reduced with large numbers of groups. When the group sizes in-
creased (n � 15), the bias disappeared with values ranging
from �0.011 to 0.051 (or �5.3% to 4.9%). Finally, listwise deletion
tended to overestimate the true between-groups coefficient, with ab-
solute bias ranging from �0.074 to 0.466 (or �36.8% to 44.8%).

Summary

The main results of the simulation study can be summarized as
follows. First, the simulation confirmed the findings of our math-
ematical derivations, namely, that the estimator of the intraclass
correlation was negatively biased for the NORM approach and

Table 2
Bias of the Estimator of the Between-Group Regression Coefficient (X on Y) for a Large Number of Groups (K � 150) and 25%
Missing Data

Conditions

MCAR (� � 0) MAR (� � .8)

NORM DI PAN CD LD NORM DI PAN CD LD

Moderate correlation at Level 2 (�B � .35)
�I,X � .10, �I,Y � .10 (true value � .350)

n � 5 .279 �.209 �.043 �.007 �.009 .241 �.223 �.067 �.008 �.174
n � 15 .231 �.094 �.010 .003 .004 .211 �.109 �.023 �.006 �.171
n � 30 .216 �.056 �.009 .000 .001 .214 �.057 �.007 �.006 �.166

�I,X � .10, �I,Y � .30 (true value � .202)
n � 5 .094 �.060 �.013 �.003 �.005 .093 �.063 �.012 �.003 �.080
n � 15 .103 �.019 �.001 �.001 �.002 .099 �.019 �.001 .001 �.076
n � 30 .102 �.009 �.001 .000 .000 .099 �.010 �.001 .000 �.075

�I,X � .30, �I,Y � .10 (true value � .606)
n � 5 .587 �.361 �.051 .021 .052 .528 �.379 �.059 .014 �.361
n � 15 .498 �.157 �.001 .018 .017 .445 �.199 �.021 .000 �.356
n � 30 .459 �.096 �.010 .001 .000 .434 �.112 �.013 �.002 �.351

�I,X � .30, �I,Y � .30 (true value � .350)
n � 5 .231 �.097 .001 .001 .002 .198 �.110 �.008 �.004 �.156
n � 15 .221 �.030 .002 .001 .001 .204 �.038 .000 .002 �.147
n � 30 .215 �.019 �.003 �.002 �.002 .209 �.014 .005 .004 �.139

Large correlation at Level 2 (�B � .60)

�I,X � .10, �I,Y � .10 (true value � .600)
n � 5 .261 �.354 �.090 .012 .020 .275 �.366 �.091 .026 �.188
n � 15 .233 �.171 �.037 �.001 �.002 .241 �.171 �.028 .010 �.193
n � 30 .232 �.094 �.016 .003 .004 .229 �.096 �.014 .005 �.198

�I,X � .10, �I,Y � .30 (true value � .346)
n � 5 .126 �.100 �.018 �.001 �.001 .121 �.104 �.016 .000 �.110
n � 15 .131 �.030 �.001 �.001 �.001 .123 �.034 �.004 �.001 �.109
n � 30 .127 �.016 �.001 .001 .001 .120 �.019 �.004 �.002 �.108

�I,X � .30, �I,Y � .10 (true value � 1.039)
n � 5 .520 �.617 �.109 .060 .095 .485 �.649 �.107 .067 �.311
n � 15 .427 �.287 �.040 .004 .009 .405 �.331 �.040 .013 �.364
n � 30 .412 �.160 �.016 .003 .004 .379 �.191 �.025 .005 �.362

�I,X � .30, �I,Y � .30 (true value � .600)
n � 5 .245 �.161 �.001 .005 .007 .223 �.189 �.009 .005 �.190
n � 15 .231 �.056 �.003 .000 .000 .212 �.068 �.003 �.002 �.185
n � 30 .230 �.028 �.001 .001 .001 .212 �.034 �.002 .000 �.178

Note. Biases larger than 10% are written in bold. n � group size; �I,X � intraclass correlation of X; �I,Y � intraclass correlation of Y; � � effect of X
on missingness; NORM � normal model imputation; DI � dummy-indicator approach; PAN � two-level imputation; CD � complete data; LD � listwise
deletion.
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positively biased for the DI approach. Second, for both the intra-
class correlation and the between-groups regression coefficient,
the performance of the DI approach was particularly problematic
in data constellations with small group sizes and low intraclass
correlations. In contrast, the performance of the NORM approach
did not improve with larger group sizes and was even worse when
the true intraclass correlations were large. Third, the PAN ap-
proach provided approximately unbiased estimates and accurate

standard errors (i.e., coverage values near the nominal value)
across the simulated conditions. It was only in a few conditions
with a small group size that the estimates of the intraclass corre-
lation and the between-groups regression coefficient were slightly
positively biased. Fourth, listwise deletion produced acceptable
parameter estimates only under MCAR conditions. The NORM,
DI, and PAN approaches were not strongly influenced by the
missing data mechanism (MCAR or MAR). Fifth, increasing the

Figure 4. Bias of the estimator of the between-groups regression coefficient (Level 2, X regressed on Y, true
value � 0.600) for varying group size (n), intraclass correlation (�I,X and �I,Y), and effect of X on missingness
(�). The correlation at Level 2 was fixed at �B � .60, the number of groups at K � 150, and the missing data
probability at 25%. NORM � normal model imputation; DI � dummy-indicator approach; PAN � two-level
imputation; CD � complete data; LD � listwise deletion.

Figure 5. Root mean square error of the estimator of the between-groups regression coefficient (Level 2, X
regressed on Y) for moderate (�B � .35, true value � .350) and large correlation at Level 2 (�B � .60, true
value � .600), and varying group size (n) and intraclass correlation (�I,X and �I,Y). The effect of X on missingness
was fixed at � � 0.8, the number of groups at K � 150, and the missing data probability at 25%. NORM �
normal model imputation; DI � dummy-indicator approach; PAN � two-level imputation; CD � complete data;
LD � listwise deletion.
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missing data rate from 25% to 50% generally increased bias but
did not change the overall picture of the results, with the exception
that in a very few conditions the coverage rates for the PAN
approach were too low.

Illustrative Data Example
An example from educational psychology is used to illustrate

the impact of various MI strategies when estimating the intraclass

correlation with incomplete multilevel data. The data were taken
from the German sample of primary school students who partici-
pated in 2001 in the Progress in International Reading Literacy
Study (Bos et al., 2003; Mullis, Martin, Gonzales, & Kennedy,
2003). In this study, students were asked to rate several specific
aspects of their instruction in German and mathematics. However,
owing to time constraints, the students in a class were randomly
administered different versions of the student questionnaire (six

Figure 6. Coverage of the 95% confidence interval of the estimator of the between-groups regression
coefficient (Level 2, X regressed on Y, true value � 0.600) for varying group size (n), intraclass correlation (�I,X

and �I,Y), and effect of X on missingness (�). The correlation at Level 2 was fixed at �B � .60, the number of
groups at K � 150, and the missing data probability at 25%. NORM � normal model imputation; DI �
dummy-indicator approach; PAN � two-level imputation; CD � complete data; LD � listwise deletion.

Figure 7. Standard errors divided by the standard deviation of the (point) estimates of the between-groups
regression coefficient (X regressed on Y). The boxes indicate the median and the quartiles. Extreme individual
values are shown as dots. The correlation at Level 2 was fixed at �B � .60, the effect of X on missingness at � �
0, and the missing data probability at 25%. NORM � normal model imputation; DI � dummy-indicator
approach; PAN � two-level imputation.
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different booklets). All students were asked questions that ad-
dressed basic background variables, but only three of the six
booklets contained questions about the classroom environment in
mathematics (planned missing data design; see Graham, Taylor,
Olchowski, & Cumsille, 2006). As a result, approximately 50% of
the items are missing by design and can be assumed to be MCAR.
The data set contains N � 8,828 students nested within 476 classes
(average cluster size � 18.5).

In the present example, we focused on two aspects of students’
mathematics lessons. First, we were interested in disciplinary
problems, which lead to class disruptions and wasted time (see
Kounin, 1970). Students were asked to rate, on five items, how
chaotic and unstructured they perceived their mathematics lessons
to be (sample item: “The teacher has to wait a long time for
students to quiet down”; Cronbach’s alpha � .80). Second, we
examined students’ teacher-related anxiety in mathematics, as
assessed by a five-item scale (sample item: “In this teacher’s class,
I’m afraid that I might do something wrong”; Cronbach’s alpha �
.83). For both scales the percentage of missing values was above
50% (disciplinary problems in mathematics, 61.5% missing;
teacher-related anxiety, 61.7%). Only in the case of 50% of the
data could it be assumed that they were MCAR. For the purpose of
illustration, we considered three additional measures as auxiliary
variables in the imputation model: disciplinary problems in Ger-
man lessons (21.6% missing), reading achievement scores (0.6%
missing), and student ratings of school climate (21.9% missing).
Although the scales measuring disciplinary problems in German
lessons and school climate were administered in all six booklets, a
substantial percentage of the students failed to complete those
items.

As in the simulation study, the R package mice was used for the
NORM and DI approach. The PAN approach was specified in the
pan software. Ten imputations were generated using each proce-
dure. The R code that was used for the three MI approaches is
provided in the online supplemental materials. We also used list-
wise deletion, which excluded 62.2% of the sample from the
analyses because of the extreme pattern of missing data.

Table 3 shows the parameter estimates of the within-group
variance, the between-groups variance, and the intraclass correla-
tion for the three MI strategies and listwise deletion. The intraclass
correlation estimates obtained by the PAN approach were .181 for
disciplinary problems and .059 for anxiety. This indicates that 18%
of the total variance in the student ratings was located at the class

level for disciplinary problems, but only about 6% for teacher-
related anxiety. For disciplinary problems in mathematics, the
intraclass correlation estimates of the DI approach were close to
the estimates produced by PAN, but for teacher-related anxiety,
they were substantially larger. This is in line with the simulation
results and our mathematical derivations, which showed that the
positive bias of the DI approach is particularly pronounced with a
small intraclass correlation. Also consistent with the previous
results, the NORM approach, which ignores the multilevel struc-
ture, led to smaller estimates of the intraclass correlation for both
scales. Finally, as a large amount of the missing data in the two
scales was MCAR by design, it is not surprising that estimates
produced by listwise deletion deviated only slightly from the
estimates obtained by PAN.

Discussion

MI approaches for dealing with missing data problems have
received growing attention in psychological research in the last
two decades. In this article, we presented mathematical deriva-
tions, a computer simulation, and a real-data example to demon-
strate the importance of correctly specifying the dependence in the
data when using MI for incomplete multilevel data. We showed
that of three different MI strategies, only the approach that is based
on a multilevel imputation model produced valid parameter esti-
mates of intraclass correlations and regression coefficients in
random-intercept models under most of the simulated conditions.

What are the consequences of our findings for dealing with
incomplete multilevel data? It is difficult to give general recom-
mendations for research practice, as the impact of the various MI
strategies depends on the model of interest and the specific data
constellation (e.g., percentage of missing data, intraclass correla-
tions). However, we suggest the following. First, when researchers
are not only viewing the multilevel structure as a nuisance factor
that needs to be controlled for, but are interested in decomposing
the variance of variables at different levels of analysis, there is no
alternative to a multilevel imputation model. Even when the focus
is on estimating regression coefficients and not on estimating
variance components, however, we recommend the PAN approach
as a way of obtaining appropriate standard errors.

Second, if the missing data rate is low and the intraclass corre-
lations of the variables are small, the NORM approach that ignores
the multilevel structure of the data may produce results that are
close to those obtained using a multilevel imputation model. In
addition, the NORM approach might be improved by including
strong auxiliary variables (e.g., with low rates of missing data,
substantial correlations with missingness) that are also associated
with the between-groups portion of the missing variables. Further-
more, the DI approach could be a reasonable alternative in the case
of large groups and a substantial intraclass correlation, particularly
when the focus is on the regression coefficients (see Drechsler,
2015). However, in most settings, the true values of intraclass
correlations are unknown, and with small intraclass correlations,
the DI approach might substantially overestimate the variation
between groups.

Third, it is important that researchers not only report the amount
of missing data but also provide more details about the technique
used to deal with that issue. As the present study has shown, results
might differ dramatically depending on the MI strategy used. More

Table 3
Variance Components at Level 1 and Level 2, and Intraclass
Correlation in the Example Data Set for Different Missing
Data Strategies

Method

Disciplinary problems Teacher-related anxiety

�̂2 ̂2 �̂I �̂2 ̂2 �̂I

NORM .553 .060 .098 .583 .013 .022
DI .518 .118 .185 .570 .108 .156
PAN .510 .113 .181 .567 .035 .059
LD .521 .105 .167 .569 .027 .045

Note. �̂2 � variance at Level 1; ̂2 � variance at Level 2; �̂I � intraclass
correlation; NORM � normal model imputation; DI � dummy-indicator
approach; PAN � two-level imputation; LD � listwise deletion.
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specifically, it is very important for researchers to report the
variables that were used in the imputation model. This allows other
researchers at least to infer how the results might differ if other MI
strategies had been chosen (see Díaz-Ordaz, Kenward, Cohen,
Coleman, & Eldridge, 2014).

Although MI is gaining popularity among applied researchers,
multilevel imputation models are only rarely used in research
practice. A main reason for this is that it can be challenging to
apply software that is capable of performing MI using a multilevel
imputation model, and documentation is rather technical. It is
therefore important for methodologists to provide tutorials that
familiarize applied researchers with these important methods.
Other multilevel imputation routines are available in addition to
the R-package pan (Schafer & Zhao, 2013) that was used in the
present study. The REALCOM-IMPUTE software (Carpenter,
Goldstein, & Kenward, 2011) is a standalone software that can
handle missing data for both Level 1 and Level 2 variables, as well
as categorical variables (Goldstein, Carpenter, & Browne, 2014;
see also the R package jomo, Quartagno & Carpenter, 2016). The
software Mplus (Muthén & Muthén, 1998-2010) also provides an
imputation model (H1 imputation; see Asparouhov & Muthén,
2010) that can deal with missing values on categorical as well as
continuous variables at both Level 1 and Level 2. Mistler (2013)
offers a SAS macro (MMI_IMPUTE) that performs multilevel
imputation in SAS. It is also possible to use a multilevel model for
imputing incomplete, continuous Level 1 variables in a chained
equations approach with the function mice.impute.2l.norm in the
software mice (van Buuren, 2012; see also Enders et al., 2016).

As is true of any simulation study, the results of our study
cannot be generalized beyond its specific conditions, for six rea-
sons. First, we did not compare the performance of the various MI
strategies under more extreme conditions. For example, a group
size of two is common in research with dyads, which are studied
in many different psychological disciplines (Kenny, Kashy, &
Cook, 2006). Moreover, psychological variables often show intra-
class correlations that are substantially lower (e.g., .05 or smaller)
than under the conditions included in the simulation. The DI
approach might be expected to be even more problematic in these
conditions.

Second, the model of interest in the present study was a multi-
level random-intercept model in which the between part of the
Level 1 predictor was treated as a latent variable (Lüdtke et al.,
2008; Preacher et al., 2010). This model was used as an analysis
model, and it was also assumed that it was the data-generating model
in the population. Alternatively, a traditional multilevel model
could be used to estimate the group-level effects of Level 1
predictors (e.g., Raudenbush & Bryk, 2002). The important dif-
ference is that in the traditional model, the observed group mean of
the predictor is treated as a manifest variable rather than a latent
variable. In the online supplement, we provide an analytical argu-
ment that the PAN approach is also an appropriate strategy for
dealing with incomplete variables in multilevel models with man-
ifest group means. This argument relies on the fact that a bivariate
multilevel model can also be represented as a multivariate single-
level model (Mehta & Neale, 2005). It can then be shown that the
covariance structure implied by the model with manifest group
means will be preserved by the PAN approach (see Carpenter &
Kenward, 2013, p. 221).7 The analytical argument was also con-
firmed by an additional simulation in which the PAN approach

produced an approximately unbiased estimator of the group-level
effect of the model with manifest group means with coverage rates
near the nominal value.

Third, we only considered missing values that occur at Level 1.
The treatment of missing data at Level 2 has received less attention
in the literature (see Gibson & Olejnik, 2003; van Buuren, 2011),
but can be very important when the model of interest includes
Level 1 and Level 2 variables simultaneously. For example, in a
study of teacher effects on students’ motivation, the whole class of
students would need to be excluded from the analysis if the
teacher’s data are missing. The R package pan that uses a multi-
variate linear mixed effects model (see Equation 23) is capable
only of handling missing data in Level 1 variables (or Level 2
variables that result from aggregating Level 1 variables), but it
cannot address missing data that occur at Level 2. Yucel (2008)
and Goldstein et al. (2014) developed multilevel MI models that
can be used for treating incomplete data at Level 2 (see also Shin,
2013). In terms of statistical software, Mplus and REALCOM-
IMPUTE incorporate joint modeling procedures that can address
missing data at Level 2 (see also Enders et al., 2016). The chained
equation approach can also be used to impute Level 2 variables in
the mice package using the mice.impute.2lonly.norm function (see
also Yucel, 2008). Clearly, more simulation research is needed to
evaluate the performance of these models.

Fourth, we focused only on random-intercept models, which
assume that relationships between the variables do not vary across
groups. For multilevel models including random slopes (i.e.,
slopes that are allowed to vary across groups), proper MI can be
difficult when values of the covariate are missing. In the imputa-
tion model of the software pan (see Equation 23), missing values
are allowed only in the multivariate outcome, and predictor vari-
ables must be completely observed. We conducted an additional
simulation (see the online supplemental materials) in which we
evaluated how the PAN approach performs for a random slope
model with an incomplete predictor variable. The main finding
was that the estimators of the within-group and between-groups
regression coefficients are still approximately unbiased, whereas
the size of the slope variance was underestimated (see also Grund,
Lüdtke, & Robitzsch, 2016). Enders et al. (2016) discussed a
chained equations approach for handling missing values in multi-
level models with random slopes. In a simulation study, this
approach outperformed the NORM, DI, and PAN approaches of
the present study with regard to estimating the slope variance, but
still provided negatively biased estimates of the true slope vari-
ance. Yucel (2011) presented an adaptation of the multivariate
linear mixed effects model of the software pan that allows the
within-group covariance matrix to vary across groups (see also
Carpenter & Kenward, 2013). However, this approach is not
implemented in standard software, and further research is needed
to evaluate its performance. In addition, Graham (2009) suggested
that MI for multilevel models with random slopes may be carried

7 It is worth mentioning that these results also hold for the opposite
case—when the model with latent means is the analysis model and the
multilevel with manifest group means is used as an imputation model (see
the online supplemental materials). It can be concluded that the joint
imputation approach in PAN and the chained equations approach (with
manifest group means) generate imputations from the same distribution
(see also empirical examples in Enders et al., 2016).
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out separately within each group. However, as Graham (2012)
pointed out, this approach requires that the groups be quite large.
Evaluating and developing strategies for dealing with incomplete
variables in multilevel models with random slopes is a subject for
future research (see also Enders et al., 2016).

Fifth, a further limitation is that the performance of the different
MI strategies was only explored with multivariate normally dis-
tributed data. It would be important to investigate how robust
normal-distribution-based MI strategies are against violations of
these assumptions. Previous research has shown that parameter
estimates by MI can lead to serious errors of inferences when the
assumption of normality is violated, particularly with small sample
sizes and a nontrivial proportion of missing data (Demirtas, Freels,
& Yucel, 2008; Yuan, Yang-Wallentin, & Bentler, 2012). The bias
was particularly pronounced for estimates of variance parameters,
and there is some evidence that this also holds for the estimates of
variance parameters in multilevel models (see Yucel & Demirtas,
2010).

Sixth, it would also be important to compare the MI strategies
with a model-based approach that produces maximum likelihood
estimates with incomplete multilevel data in a structural equation
modeling framework (Black et al., 2011; Enders, 2010). The
software Mplus uses a full-information maximum likelihood ap-
proach to estimate two-level multilevel structural equation models
with incomplete predictor variables (Muthén & Asparouhov, 2011;
see also Hox, van Buuren, & Jolani, 2016). However, the model-
based approach is limited in its flexibility to include broad sets of
auxiliary variables, which are often needed to make the MAR
assumption more plausible (see Enders, 2010). Alternatively, two-
stage maximum likelihood approaches could be used to estimate
two-level structural equation models with missing data (Yuan &
Bentler, 2007). Two-stage approaches have the advantage that they
can incorporate broad sets of auxiliary variables and also seem to
be more robust against violations of the assumption of multivariate
normality (e.g., Savalei & Falk, 2014; Yuan, Tong, & Zhang,
2015).

We conclude that although MI is a highly recommended tech-
nique for dealing with the issue of missing data, researchers must
bear in mind that the imputation model needs to represent the
structure of the data. Our comparison of MI strategies for multiply
imputing incomplete multilevel data has shown that a multilevel
imputation model would be a reasonable choice if one is interested
in estimating multilevel random-intercept models with missing
values at Level 1.
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Appendix

Derivation of Bias for Ad Hoc Multiple Imputation Strategies

In this Appendix, we derive the asymptotic bias for the NORM
approach and the DI approach, when estimating the within-group
variance, the between-groups variance, the intraclass correlation,
and the within- and between-groups regression coefficients from
incomplete multilevel data. We assume that the data have a two-
level structure with two mean-centered variables X and Y (see
Equations 3 and 4). The values in Y are MCAR and X is fully
observed. In addition, we assume that in each group n1 persons
have observed values and n0 � n – n1 have missing values for Y.
With no loss of generality, we assume that the first n1 values in a
group are observed and that the other n0 values are missing. In the
following, the given data (Xij, Yij) are denoted as (Xij(obs), Yij(obs)),
if Yij is observed and (Xij(mis), Yij(mis)), if Yij is missing. Missing
values are replaced with the imputed values Yij(imp) and the com-
pleted data are denoted as Yij

�. If Yij is observed, then Yij
� � Yij(obs),

otherwise Yij
� � Yij(imp). Finally, the following derivations are

based on the assumption that the number of groups approaches
infinity (K ¡ �).

NORM Approach

The NORM approach ignores the multilevel structure of the data
and uses a simple regression for imputing the missing values

Yij � � � �total,YXXij � eij, Var(eij) � �e
2, (A.1)

where the regression coefficient �total,YX indicates the total rela-
tionship between X and Y (i.e., ignoring the grouped data structure)
and the residual variance �e

2 is assumed to be homogenous. As
E(Xij) � 0, the intercept 	 is estimated to be zero if the number of
groups approaches infinity (K ¡ �). By using the MCAR assump-
tion, the regression coefficient �total,YX is given by

E(�̂total,YX) �
Cov(Xij(obs), Yij(obs))

Var(Xij(obs))

�
Cov(Xij, Yij)

Var(Xij)

�
Cov(XB,ij, YB,ij) � Cov(XW,ij, YW,ij)

Var(XB,j) � Var(XW,ij)

�
�B�X�Y � �W�X�Y

�X
2 � �X

2

�
�X

2�B,YX � �X
2�W,YX

�X
2 � �X

2 . (A.2)

The residual variance is estimated by the following expression

�̂e
2 � 1

Kn1 
 2�
j�1

K

�
i�1

n1

(Yij(obs) 
 Ŷij(obs))
2. (A.3)

We can now derive

E��̂e
2� � E(Yij(obs) 
 �total,YXXij(obs))

2

� E(Yij 
 �total,YXXij)
2

� �Y
2 � �Y

2 
 �total,YX
2 ��Y

2 � �Y
2�. (A.4)

Thus, the imputed values are given by

Yij(imp) � �total,YXXij(mis) � eij, eij � N�0, �e
2�. (A.5)

The within-group variance �Y
2 can be estimated using the ob-

served within-group variance of the completed data (Snijders &
Bosker, 2012):

�̂Y
2 �Swithin,Y

2 � 1
K(n
1)�

j�1

K ��
i�1

n1

�Yij(obs) 
Y�●j
� �2 � �

i�n1�1

n1�n0

�Yij(imp) 
Y�●j
� �2�.

(A.6)

For the estimator of the between-groups variance Y
2, we need

the observed between-groups variance of the completed data

Sbetween,Y
2 � 1

K 
 1�
j�1

K

�Y�●j
� 
 Y�●●

� �2. (A.7)

The estimator of the between-groups variance is then given by

�̂Y
2 � Sbetween,Y

2 
 Swithin,Y
2 ⁄ n. (A.8)

We now show that for the NORM approach the following
relation holds: Bias(̂Y

2) � –Bias(�̂Y
2). We first write the total sum

of squares for the completed data

SStotal,Y � �
j�1

K

�
i�1

n

�Yij
� 
 Y�●●

* �2

��
j�1

K

�
i�1

n

�Y�●j
� 
 Y�●●

* �2��
j�1

K

�
i�1

n

�Yij
� 
 Y�●j

* �2

� SSbetween,Y � SSwithin,Y. (A.9)

Using that SSwithin,Y � K(n – 1) Swithin,Y
2 and SSbetween,Y � (K – 1)n

Sbetween,Y
2 , the following relationship holds:

E(SStotal,Y)
Kn � E�Yij

*�2 � K 
 1
K · E�Sbetween,Y

2 � � n 
 1
n E�Swithin,Y

2 �.

(A.10)

For a large number of groups (K ¡ �), this reduces to

E�Yij
*�2 � E�Sbetween,Y

2 � � (1 
 1 ⁄ n)E�Swithin,Y
2 �. (A.11)

(Appendix continues)
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Note that the imputed values in the NORM approach preserve
the total variance of Y:

Var(Yij(imp)) � E�Yij(imp)
*2 � � �total,YX

2 ��X
2 � �X

2� � �e
2 � �Y

2 � �Y
2 .

(A.12)

Thus, it follows that

�Y
2 � �Y

2 � E��̂Y
2� � (1 ⁄ n)E��̂Y

2� � (1 
 1 ⁄ n)E��̂Y
2� � E��̂Y

2� � E��̂Y
2�.

(A.13)

Based on this relation, it can be concluded that

Bias��̂Y
2� � 
Bias��̂Y

2�. (A.14)

We now derive the bias for the estimator of the between-groups
variance ̂Y

2 using the following relationship:

E�Sbetween,Y
2 � � E��̂Y

2� � (1 ⁄ n)E��̂Y
2� � �Y

2 � (1 ⁄ n)�Y
2

� (1 
 1 ⁄ n)Bias��̂Y
2�. (A.15)

Rearranging terms and solving for the bias term, we obtain

Bias��̂Y
2� � n(n 
 1)
1�E�Sbetween,Y

2 � 
 �Y
2 
 (1 ⁄ n)�Y

2�.

(A.16)

For taking the expectation of Sbetween,Y
2 , we use the following

relationship:

E�Y�●j
* 
 Y�●●

* �2 � E�K 
 1
K Y�●j

* 
 1
K�

k�j
Y�●k

* �2
� K 
 1

K E�Y�●j
* �2.

(A.17)

The expectation is now given by E�Sbetween,Y
2 � � E�Y�●j

* �2, and for
the average of the completed data, we consider the sum

�
i�1

n

Yij
* � n1YB,j � �

i�1

n1

YW,ij(obs) � n0�total,YXXB,j

� �
i�n1�1

n1�n0

(�total,YXXW,ij(mis) � eij). (A.18)

Then it can be shown that

n2E�Y�●j
* �2 � �X

2�n1�B,YX � n0�total,YX�2 � n1
2�Y

2�1 
 �B
2�

� n1�Y
2 � n0�total,YX

2 �X
2 � n0�e

2

� �X
2�n1�B,YX � n0�total,YX�2 � n1

2�Y
2�1 
 �B

2�
� n�Y

2 � n0�Y
2 
 n0�total,YX

2 �X
2.

(A.20)

This is used to show that the following relation holds:

n2E�Y�●j
* �2 
 n2�Y

2 
 n�Y
2 � �X

2�n1�B,YX � n0�total,YX�2

� n1
2�Y

2�1 
 �B
2� � n0�Y

2 
 n0�total,YX
2 �X

2 
 n2�Y
2

� �Y
2
�B

2��n1 � n0
�total,YX

�B,YX
�2

� n0 
 n0��total,YX

�B,YX
�2


 n2�
� �1 
 �B

2��n1
2 � n0 
 n2�. (A.21)

Inserting Equation A.21 into Equation A.16, and using p0 �
n0/n, the bias of the estimator of the between-groups variance is
given by

Bias(�̂Y
2) � 
p0�Y

2 n
n 
 1��B

2(1 
 �I,X)(�B,YX 
 �W,YX)AX

� �1 
 �B
2�Ae	, (A.22)

where AX � {2(1 � p0) � (p0 � 1/n)(�total,YX/�B,YX � 1)}/�B,YX

and Ae � 2 � 1/n � p0.
The bias for the estimator of the intraclass correlation of Y can

be written as

Bias(�̂I,Y) �
Bias��̂Y

2�
�Y

2 � �Y
2 � �I,Y ·

Bias��̂Y
2�

�Y
2 . (A.23)

Then for the bias of the estimator of the within-group variance,
we can use Equation A.14 to show that Bias(�̂Y

2) � �Bias(̂Y
2).

In the next step, we investigate the bias of the estimator of the
within-group regression coefficient. The estimator for the within-
group covariance �W,XY is given as follows:

Cwithin � 1
K(n 
 1)�j�1

K ��
i�1

n1

(Xij(obs) 
 X�●j)�Yij(obs) 
 Y�●j
* �

� �
i�n1�1

n1�n0

(Xij(mis) 
 X�●j)�Yij(mis) 
 Y�●j
* ��. (A.24)

For the expectations of the single cross-products of the observed
values the following relationships hold:

E(Xij(obs)Yij(obs)) � E(XB,jYB,j) � E(XW,ij(obs)YY,ij(obs))

� �B,YX�X
2 � �W,YX�X

2 (A.25)

E(X�●jYij(obs)) � E(XB,jYB,j) � (1 ⁄ n)E(XW,ij(obs)YY,ij(obs))

� �B,YX�X
2 � (1 ⁄ n)�W,YX�X

2 (A.26)

E(Xij(obs)Y�●j
* ) � (1 ⁄ n)�X

2(n1�B,YX � n0�total,YX) � (1 ⁄ n)�X
2�W,YX

(A.27)

E�X�●jY�●j
* � � (1 ⁄ n)�X

2(n1�B,YX � n0�total,YX) � (n1 ⁄ n2)�X
2�W,YX

� (n0 ⁄ n2)�total,YX�X
2 . (A.28)

Using these relationships, the expectation for the cross-product
of the observed values is given by

E(Xij(obs) 
 X�●j)(Yij(obs) 
 Y�●j
* ) � (1 
 1 ⁄ n)�W,YX�X

2

� (1 ⁄ n2)�X
2n0(�total,YX 
 �W,YX). (A.29)

(Appendix continues)
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In a similar way, the expectations of the single cross-product
terms for the imputed values are given by

E(Xij(mis)Yij(imp)) � �total,YX�X
2 � �total,YX�X

2 (A.30)

E�Xij(mis)Y�●j
* � � (1 ⁄ n)�X

2(n1�B,YX � n0�total,YX) � (1 ⁄ n)�X
2�total,YX

(A.31)

E(X�●jYij(imp)) � �total,YX�X
2 � (1 ⁄ n)�total,YX�X

2 . (A.32)

Using these relationships, together with Equation A.28 the ex-
pectation of Cwithin yields

E(Cwithin) �
n1�W,YX � n0�total,YX

n �X
2

� �W,YX�X
2 �

n0

n ��total,YX 
 �W,YX�X
2�. (A.33)

The bias of the estimator of the within-group covariance �W,XY

is then given by

Bias(�̂W,XY) � p0 · �I,X · (�B,YX 
 �W,YX) · �X
2 . (A.34)

The bias of the estimator of the within-group coefficient �W,YX

can now be expressed as follows:

Bias(�̂W,YX) � p0 · �I,X · (�B,YX 
 �W,YX). (A.35)

For the regression of X on Y, the bias of the estimator of the
within-group coefficient �W,XY can be written as a function of
the biases of the estimators of the within-group covariance and the
within-group variance of Y:

Bias(�̂W,XY) �
Bias(�̂W,XY) 
 �W,XYBias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (A.36)

For investigating the between-groups covariance �B,XY, we first
define the covariance of the observed group means

Cbetween � 1
K 
 1�

j�1

K

(X�●j 
 X�●●)�Y�●j
* 
 Y�●●

* �. (A.37)

The estimator of the between-groups covariance �B,XY is then
given by

�̂B,XY � Cbetween 
 Cwithin ⁄ n. (A.38)

For the expectation of Cbetween, the following relation holds:

E(Cbetween) � 1
K 
 1�

j�1

K

E(X�●j 
 X�●●)�Y�●j
* 
 Y�●●

* �

� K
K 
 1 · �1 
 1

K� · E�X�●jY�●j
* �

� E�X�●jY�●j
* �

� (1 ⁄ n)�X
2(n1�B,YX � n0�total,YX) � (n1 ⁄ n2)�W,YX�X

2

� (n0 ⁄ n2)�total,YX�X
2 (A.39)

The expectation of the estimator of the between-groups covari-
ance is then given by

E(�̂B,XY) � E(Cbetween) 
 (1 ⁄ n)E(Cwithin)

� �B,YX�X
2 � �X

2n0(�total,YX 
 �B,YX)(1 ⁄ n).

(A.40)

Thus, the bias can be calculated as

Bias(�̂B,XY) � 
p0 · (1 
 �I,X) · (�B,YX 
 �W,YX) · �X
2 .

(A.41)

The bias of the estimator of the between-groups coefficient
�B,YX can be written as

Bias(�̂B,YX) � 
p0 · (1 
 �I,X) · (�B,YX 
 �W,YX). (A.42)

We now derive the expectation of the estimator of the between-
groups coefficient �B,XY, using the bias for the estimator of the
between-groups covariance and the between-groups variance

E(�̂B,XY) �
�B,XY � Bias(�̂B,XY)

�Y
2 � Bias��̂Y

2�

� �B,XY �
Bias(�̂B,XY) 
 �B,XYBias��̂Y

2�
�Y

2 � Bias��̂Y
2�

.

(A.43)

The bias is then given by

Bias(�̂B,XY) �
Bias(�̂B,XY) 
 �B,XY · Bias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (A.44)

DI Approach

In the DI approach, dummy variables for the groups are included
in the imputation model. The regression Yij � 	j � �Xij� eij is
used for imputing missing values in Y, where 	j is a group-specific
fixed effect. The regression coefficient � consistently estimates the
within-group coefficient �W,YX, when the number of groups ap-
proaches infinity. The residual variance is assumed to be homo-
geneous Var(eij) � �e

2. The group-specific fixed effects 	j are
estimated as follows:

�̂j � Y�●j(obs) 
 �X�●j(obs)

� YB,j � (1 ⁄ n1)�
i�1

n1

YW,ij(obs) 
 �W,YX�XB,j � (1 ⁄ n1)�
i�1

n1

XW,ij(obs)�
� YB,j 
 �W,YXXB,j � (1 ⁄ n1)�

i�1

n1

(YW,ij(obs) 
 �W,YXXW,ij(obs))

(A.45)

(Appendix continues)
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Thus, the expected value of a group-specific effect is given by
E(	̂j) � YB,j � �W,YXXB,j, and its variance is Var(	̂j) � (1/
n1)�Y

2(1 � �W
2 ). Furthermore, it can be shown that the estimator of

the residual variance in the regression provides an unbiased esti-
mate of the within-group variance E(�̂e

2) � �Y
2(1 � �W

2 ) � �W,YX,e
2 ,

if the number of groups is large. The imputed values Yij(imp) are
then generated by a regression with sampled group-specific effects
�j

� � �̂j � ��j
with ��j

� N�0,Var��̂j�� and normally distributed
residuals eij � N(0, �W,YX,e

2 ):

Yij(imp) � �j
� � �Xij(mis) � eij

� YB,j � ��j
� �W,YXXW,ij(mis)

� (1 ⁄ n1)�
i�1

n1

(YW,ij(obs) 
 �W,YXXW,ij(obs)) � eij.

(A.46)

Again, we first calculate the bias for the estimator of the
within-group variance Swithin,Y

2 . The group average of the completed
data Y�●j

* is given by

Y�●j
* � YB,j �

n0

n ��j
� 1

n�i�1

n1

YW,ij(obs) � 1
n �

i�n1�1

n1�n0

�W,YXXW,ij(mis)

� 1
n �

i�n1�1

n1�n0

eij �
n0

nn1
�
i�1

n1

(YW,ij(obs) 
 �W,YXXW,ij(obs))

� YB,j � (n0 ⁄ n)��j
� (1 ⁄ n)�

i�1

n

�W,YXXW,ij

� (1 ⁄ n1)�
i�1

n1

εW,Yij � (1 ⁄ n) �
i�n1�1

n1�n0

eij

(A.47)

where εW,Yij is the residual of the within-group regression of Y
on X.

Then the variance of the average of the completed data can be
calculated as

E�Y�●j
* �2 � �Y

2 � (1 ⁄ n)�Y
2 � (2n0 ⁄ nn1)�Y

2�1 
 �W
2 �.

(A.48)

The squared deviation of an observed value Yij(obs) in a group is
given by

E�Yij(obs) 
 Y�●j
* �2 � E�Yij(obs)

2 � � E�Y�●j
* �2 
 2E�Yij(obs)Y�●j

* �.

(A.49)

For the variance of an observed value, we write

E�Yij(obs)
2 � � Var(Yij(obs)) � Var(YB,j) � Var(YW,ij) � �Y

2 � �Y
2 .

(A.50)

The covariance is given by

E�Yij(obs)Y�●j
* � � E�YB,j

2 � � (1 ⁄ n)E[��W,YXXW,ij(obs)�2]

� (1 ⁄ n1)E�εW,Yij
2 �

� �Y
2 � (1 ⁄ n)�Y

2�W
2 � �1 ⁄ n1��Y

2�1 
 �W
2 �.

(A.51)

Using Equations A.48, A.50, and A.51, we can write

E�Yij(obs) 
 Y�●j
* �2 � (1 
 1 ⁄ n)�Y

2 . (A.52)

The variance of an imputed value is given by

E�Yij(imp)
2 � � Var(Yij(imp)) � �Y

2 � �Y
2 � (2 ⁄ n1)�Y

2�1 
 �W
2 �.

(A.53)

The covariance of an imputed value with the mean of the
completed data in a group can be calculated as follows:

E�Yij(imp)Y�·j
*� � E�YB,j

2 � � (n0 ⁄ n)E�V�j

2 � � (1 ⁄ n)E�eij
2�

� (1 ⁄ n)E[(�W,YXXW,ij(mis))
2] � (1 ⁄ n1)�Y

2�1 
 �W
2 �

� �Y
2 � (2 ⁄ n1)�Y

2 
 (1 ⁄ n)�Y
2�W

2 
 (2n0 ⁄ nn1)�Y
2�W

2

(A.54)

Using Equations A.48, A.53, and A.54, we can write for the
squared deviation of an imputed value

E�Yij(imp) 
 Y�●j
* �2 � (1 
 1 ⁄ n)�Y

2 . (A.55)

Now the sum for all squared deviations is calculated by com-
bining Equations A.52 and A.55:

�
i�1

n

E�Yij
* 
 Y�●j

* �2 � (n 
 1)�Y
2 . (A.56)

Thus, the DI approach provides an unbiased estimator of the
within-group variance E(Swithin,Y

2 ) � �Y
2. For the expectation of the

observed between-groups variance Sbetween,Y
2 , we use Equations

A.17 and A.48. The bias for the estimator of the between-groups
variance can now be calculated as follows:

Bias��̂Y
2� � E�Sbetween,Y

2 

Swithin,Y

2

n
�
 �̂Y

2 �
�Y

2

n ·
2p0

1 
 p0
· �1 
 �W

2 �.

(A.57)

In order to obtain the bias for the intraclass correlation of Y, we
first write

Bias(�̂I,Y) �
�Y

2 � �Y
2 · r

�Y
2 � �Y

2 � �Y
2 · r



�Y

2

�Y
2 � �Y

2

� (1 
 �I,Y)2 · �1 

�Y

2 · r

�Y
2 � �Y

2 � �Y
2 · r� · r,

(A.58)

(Appendix continues)
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where we define r � 1
n ·

2p0

1 
 p0
· �1 
 �W

2 �. Expanding the factors

in squared brackets in Equation A.58 and neglecting the second
term because it is of power n2 leads to

Bias(�̂I,Y) � (1 
 �I,Y)2 · r � (1 
 �I,Y)2 · 1
n ·

2p0

1 
 p0
· �1 
 �W

2 �.

(A.59)

For the bias of the within- and between-groups regression co-
efficients, we start again with Cwithin. First, we show for the
cross-product �Xij�obs� 
 X�●j��Yij�obs� 
 Y�●j� involving observed
values that the following relationships hold:

E(Xij(obs)Yij(obs)) � E(XB,jYB,j) � E(XW,ij(obs)YW,ij(obs))

� �B�X�Y � �W�X�Y (A.60)

E�Xij(obs)Y�●j
� � � E(XB,jYB,j) � (1 ⁄ n)E(XW,ij(obs)XW,ij(obs))�W,YX

� �B�X�Y � (1 ⁄ n)�X
2�W�X�Y (A.61)

E(X�●jYij(obs)) � (1 ⁄ n)E(XijYij) � �B�X�Y � (1 ⁄ n)�W�X�Y

(A.62)

E�X�●jY�●j
* � � E(XB,jYB,j) � (1 ⁄ n)E(XW,ij(obs)XW,ij(obs))�W,YX

� �B�X�Y � (1 ⁄ n)�W�X�Y. (A.63)

Combining the Equations A.60 to A.63, the expectation for the
deviations of the observed values within groups is given by

E[(Xij(obs) 
 X�●j)(Yij(obs) 
 Y�●j)] � (1 
 1 ⁄ n)�W�X�Y.

(A.64)

In a similar manner, this relation can be shown to hold for
cross-product terms involving imputed values. It follows that

Cwithin is an unbiased estimator of the within-group covariance
�W,XY:

E(�̂W,XY) � 1
K(n 
 1)�j�1

K

�
i�1

n

E�(Xij 
 X�●j)�Yij
* 
 Y�●j

* ��

� �W�X�Y � �W,XY. (A.65)

For the between-groups covariance, we first show (using Equa-
tions A.39 and A.63) that the expectation of Cbetween is given by

E(Cbetween) � E�X�●jY�●j
* � � �B�X�Y � (1 ⁄ n)�W�X�Y.

(A.66)

Then it follows that the estimator of the between-groups cova-
riance is unbiased

E(�̂B,XY) � E(Cbetween) 
 (1 ⁄ n)E(Cwithin) � �B�X�Y � �B,XY.

(A.67)

However, the estimator of the between-groups coefficient �B,XY

is biased because the estimator of the between-groups variance Y
2

is biased

Bias(�̂B,XY) �
�B,XY � Bias(�̂B,XY)

�Y
2 � Bias(�̂Y

2)

 �B,XY

� 
�B,XY
Bias��̂Y

2�
�Y

2 � Bias��̂Y
2�

. (A.68)
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